135 resultados para Constrained Optimal Control
Resumo:
In this paper we present a weak maximum principle for optimal control problems involving mixed constraints and pointwise set control constraints. Notably such result holds for problems with possibly nonsmooth mixed constraints. Although the setback of such result resides on a convexity assumption on the extended velocity set, we show that if the number of mixed constraints is one, such convexity assumption may be removed when an interiority assumption holds. © 2008 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An optimal control framework to support the management and control of resources in a wide range of problems arising in agriculture is discussed. Lessons extracted from past research on the weed control problem and a survey of a vast body of pertinent literature led to the specification of key requirements to be met by a suitable optimization framework. The proposed layered control structure—including planning, coordination, and execution layers—relies on a set of nested optimization processes of which an “infinite horizon” Model Predictive Control scheme plays a key role in planning and coordination. Some challenges and recent results on the Pontryagin Maximum Principle for infinite horizon optimal control are also discussed.
Resumo:
Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.
Resumo:
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A model for optimal chemical control of leaf area damaged by fungi population - Parameter dependence
Resumo:
We present a model to study a fungi population submitted to chemical control, incorporating the fungicide application directly into the model. From that, we obtain an optimal control strategy that minimizes both the fungicide application (cost) and leaf area damaged by fungi population during the interval between the moment when the disease is detected (t = 0) and the time of harvest (t = t(f)). Initially, the parameters of the model are considered constant. Later, we consider the apparent infection rate depending on the time (and the temperature) and do some simulations to illustrate and to compare with the constant case.
Resumo:
A Maximum Principle is derived for a class of optimal control problems arising in midcourse guidance, in which certain controls are represented by measures and, the state trajectories are functions of bounded variation. The optimality conditions improves on previous optimality conditions by allowing nonsmooth data, measurable time dependence, and a possibly time varying constraint set for the conventional controls.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
In this article we introduce the concept of MP-pseudoinvexity for general nonlinear impulsive optimal control problems whose dynamics are specified by measure driven control equations. This is a general paradigm in that, both the absolutely continuous and singular components of the dynamics depend on both the state and the control variables. The key result consists in showing the sufficiency for optimality of the MP-pseudoinvexity. It is proved that, if this property holds, then every process satisfying the maximum principle is an optimal one. This result is obtained in the context of a proper solution concept that will be presented and discussed. © 2012 IEEE.
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.