88 resultados para Chloride ion diffusion coefficient
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Kinetics of osmotic dehydration (OD) and effects of sucrose impregnation on thermal air-drying of pumpkin slices were investigated. A simplified model based on the solution of Fick's Law was used to estimate effective diffusion coefficients during OD and air-drying. In order to take into account shrinkage, average and variable thicknesses were considered. Pumpkin slices were dehydrated in sucrose solutions (40%, 50% and 60%, w/w, 27 degrees C. The effective water diffusion coefficients were higher than the sucrose, and low diffusivity dependence with solution concentration was observed. Samples non-treated and pre-treated in 60% osmotic solutions during one hour were dried in a hot-air-dryer at 50 and 70 degrees C (2 m/s) until equilibrium was achieved. Pre-treatment enhanced mass transfer during air-drying. Great volume reduction was observed in pre and non-treated dried samples. Using variable thickness in the model diminished the relative deviations between predicted and experimental OD and drying data. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length.The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibility of stabilization of the unstable pi-mode regime. (C) 2000 Published by Elsevier B.V. B.V. PACS: 03.75.Fi; 05.30.Jp.
Resumo:
The molar single ion activity coefficient (y(F)) of fluoride ions was determined at 25 degrees C and ionic strengths between 0.100 and 3.00 mol L(-1) NaClO(4) using an ion-selective electrode. The activity coefficient dependency on ionic strength was determined to be Phi(F) = log y(F) = 0.2315I-0.041I(2). The function Phi(F)(I), combined with functions obtained in previous work for copper (Phi(Cu)) and hydrogen (Phi(H)), allowed us to make the estimation of the stoichiometric and thermodynamic protonation constants of some halides and pseudo-halides as well as the formation constants of some pseudo-halides and fluoride 1:1 bivalent cation complexes. The calculation procedure proposed in this paper is consistent with critically-selected experimental data. It was demonstrated that it is possible to use Phi(F)(I) for predicting the thermodynamic equilibrium parameters independently of Pearson's hardness of acids and bases.
Resumo:
HZSM5 zeolite was modified by exchanging proton by niobium (V). Several samples were obtained with various degrees of exchange. Pore volumes and acidity were measured to characterize these exchanged zeolites. Catalytic properties were evaluated with two reaction tests: m-xylene transformation and n-heptane cracking. The introduction of niobium on HZSM5 zeolite decreases the diffusion coefficient of 2-methyl-pentane and increases the zeolite acidity. The sample containing niobium are initially more active in cracking of n-heptane and m-xylene isomerization than HZSM5 alone.
Resumo:
Fractal geometry would appear to offer promise for new insight on water transport in unsaturated soils, This study was conducted to evaluate possible fractal influence on soil water diffusivity, and/or the relationships from which it arises, for several different soils, Fractal manifestations, consisting of a time-dependent diffusion coefficient and anomalous diffusion arising out of fractional Brownian motion, along with the notion of space-filling curves were gleaned from the literature, It was found necessary to replace the classical Boltzmann variable and its time t(1/2) factor with the basic fractal power function and its t(n) factor, For distinctly unsaturated soil water content theta, exponent n was found to be less than 1/2, but it approached 1/2 as theta approached its sated value, This function n = n(theta), in giving rise to a time-dependent, anomalous soil water diffusivity D, was identified with the Hurst exponent H of fractal geometry, Also, n approaching 1/2 at high water content is a behavior that makes it possible to associate factal space filling with soil that approaches water saturation, Finally, based on the fractally interpreted n = n(theta), the coalescence of both D and 8 data is greatly improved when compared with the coalescence provided by the classical Boltzmann variable.
Resumo:
The vitrification and devitrification features of lead fluoride are investigated by means of molecular dynamic simulations. The influence of heating rate on the devitrification temperature as well as the dependence of the glass properties on its thermal history, i.e., the cooling rate employed, is identified. As expected, different glasses are obtained when the cooling rates differ. Diffusion coefficient analysis during heating of glass and crystal, indicates that the presence of defects on the glassy matrix favors the transition processes from the ionic to a superionic state, with high mobility of fluorine atoms, responsible for the high anionic conduction of lead fluoride. Nonisothermal and isothermal devitrification processes are simulated in glasses obtained at different cooling rates and structural organizations occurring during the heat treatments are clearly observed. When a fast cooling rate is employed during the glass formation, the devitrification of a single crystal (limited by the cell dimensions) is observed, while the glass obtained with slower cooling rate, allowing relaxations and organization of various regions on the glass bulk during the cooling process, devitrifies in more than one crystalline plane. (C) 2004 American Institute of Physics.
Resumo:
This study reports the photodegradation of 4-chlorophenol (4-CP) in aqueous solution by the photo-Fenton process using solar irradiation. The influence of solution path length, and Fe(NO3)(3) and H2O2 concentrations on the degradation of 4-CP is evaluated by response surface methodology. The degradation process was monitored by the removal of total organic carbon (TOC) and the release of chloride ion. The results showed a very important role of iron concentration either for TOC removal or dechlorination. on the other hand, a negative effect of increasing solution path length on mineralization was observed, which can be compensated by increasing the iron concentration. This permits an adjustment of the iron concentration according to the irradiation exposure area and path length (depth of a tank reactor). Under optimum conditions of 1.5 mM Fe(NO3)(3), 20.0 mM H2O2 and 4.5 cm solution path length, 17 min irradiation under solar light were sufficient to reduce a 72 mg C L-1 solution of 4-CP by 91 (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The degradation of herbicides in aqueous solution by photo-Fenton process using ferrioxalate complex (FeOx) as source of Fe2+ was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, diuron and 2,4-D were used. The multivariate analysis, more precisely, the response surface methodology was applied to evaluate the role of FeOx and hydrogen peroxide concentrations as variables in the degradation process, and in particular, to define the concentration ranges that result in the most efficient degradation of the herbicides. The degradation process was evaluated by the determination of the remaining total organic carbon content (TOC), by monitoring the decrease of the concentrations of the original compounds using HPLC and by the chloride ion release in the case of diuron and 2,4-D. Under optimized conditions, 20min were sufficient to mineralize 93% of TOC from 2,4-D and 90% of diuron, including oxalate. Complete dechlorination of these compounds was achieved after 10 min reaction. It was found that the most recalcitrant herbicide is tebuthiuron, while diuron shows the highest degradability. However, under optimized conditions the initial concentration of tebuthiuron was reduced to less than 15%, while diuron and 2,4-D were reduced to around 2% after only 1 min reaction. Furthermore, it was observed that the ferrioxalate complex plays a more important role than H2O2 in the photodegradation of these herbicides in the ranges of concentrations investigated. (C) 2004 Elsevier Ltd. All rights reserved.