20 resultados para CONSTRAINED OPTIMIZATION
Resumo:
We consider free time optimal control problems with pointwise set control constraints u(t) ∈ U(t). Here we derive necessary conditions of optimality for those problem where the set U(t) is defined by equality and inequality control constraints. The main ingredients of our analysis are a well known time transformation and recent results on necessary conditions for mixed state-control constraints. ©2010 IEEE.
Resumo:
This article presents and discusses necessary conditions of optimality for infinite horizon dynamic optimization problems with inequality state constraints and set inclusion constraints at both endpoints of the trajectory. The cost functional depends on the state variable at the final time, and the dynamics are given by a differential inclusion. Moreover, the optimization is carried out over asymptotically convergent state trajectories. The novelty of the proposed optimality conditions for this class of problems is that the boundary condition of the adjoint variable is given as a weak directional inclusion at infinity. This improves on the currently available necessary conditions of optimality for infinite horizon problems. © 2011 IEEE.
Resumo:
Deterministic Optimal Reactive Power Dispatch problem has been extensively studied, such that the demand power and the availability of shunt reactive power compensators are known and fixed. Give this background, a two-stage stochastic optimization model is first formulated under the presumption that the load demand can be modeled as specified random parameters. A second stochastic chance-constrained model is presented considering uncertainty on the demand and the equivalent availability of shunt reactive power compensators. Simulations on six-bus and 30-bus test systems are used to illustrate the validity and essential features of the proposed models. This simulations shows that the proposed models can prevent to the power system operator about of the deficit of reactive power in the power system and suggest that shunt reactive sourses must be dispatched against the unavailability of any reactive source. © 2012 IEEE.
Resumo:
This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS