30 resultados para CATHODIC CLEAVAGE
Resumo:
At accumulation potentials close to +0.1 V at a hanging mercury drop electrode, ceftazidime is accumulated at pH 9.5, probably in a hydrolysed or otherwise chemically altered form, in an anodic process to give an adsorbed mercury salt. The accumulation of this mercury salt allows the indirect cathodic-stripping voltammetric determination of ceftazidime using the reduction peak of the mercury salt at -0.70 V. The high sensitivity of the method coupled with high sample dilution allows ceftazidime to be determined in milk samples at the 28 mu g ml(-1) level without prior separation. In order to determine lower levels of ceftazidime in milk (ca. 10 ng ml(-1)) a separation process would be required. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.
Resumo:
Considerable interest is currently focused on fish haemoglobins in order to identify the structural basis for their diversity of functional behavior. Hoplosternum littorale is a catfish that presents bimodal gill (water)/gut (air) -breathing, which allows this species to survive in waters with low oxygen content. The hemolysate of this fish showed the presence of two main haemoglobins, cathodic and anodic. This work describes structural features analyzed here by integration of molecular modeling with small angle X-ray scattering. Here is described a molecular model for the cathodic haemoglobin in the unliganded and liganded states. The models were determined by molecular modeling based on the high-resolution crystal structure of fish haemoglobins. The structural models for both forms of H. littorale haemoglobin were compared to human haemoglobin. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A sensitive method is described for the determination of cefaclor by cathodic stripping voltammetry at the hanging mercury drop electrode. cefaclor is accumulated at the electrode surface as a mercury salt, which is reduced at -0.67 V. The optimum accumulation potential and accumulation time were +0.15 V and up to 180 s, respectively. Linear calibration graphs were obtained between 3.9 mu g.L-1 to 39 mu g.L-1 and the limit of determination was evaluated to be 1.9 mu g.L-1. The method was applied successfully to the determination of cefaclor in pharmaceutical formulations.
Resumo:
Two cleavage pathways of beta-carotene have been proposed, one by central cleavage and the other by random (excentric) cleavage. The central cleavage pathway involves the metabolism of beta-carotene at the central double bond (15, 15') to produce retinal by beta-carotene 15, 15'-dioxygenase (E.C.888990988). The random cleavage of beta-carotene produces beta-apo-carotenoids, but the mechanism is not clear. To understand the various mechanisms of beta-carotene cleavage, beta-carotene was incubated with the intestinal postmitochondrial fractions of 10-week-old male rats for 1 h and cleavage products of beta-carotene were analyzed using reverse-phase, high-performance liquid chromatography (HPLC). We also studied the effects of alpha-tocopherol and NAD(+)/NADH on beta-carotene cleavage. In addition to beta-carotene, we used retinal and beta-apo-14'-carotenoic acid as substrates in these incubations. Beta-apo-14'-carotenoic acid is the two-carbon longer homologue of retinoic acid. In the presence of alpha-tocopherol, beta-carotene was converted exclusively to retinal, whereas in the absence of alpha-tocopherol, both retinal and beta-apo-carotenoids were formed. Retinoic acid was produced from both retinal and beta-apo-14'-carotenoic acid incubations only in the presence of NAD(+). Our data suggest that in the presence of an antioxidant such as alpha-tocopherol, beta-carotene is converted exclusively to retinal by central cleavage. In the absence of an antioxidant, beta-carotene is cleaved randomly by enzyme-related radicals to produce beta-apo-carotenoids, and these beta-apo-carotenoids can be oxidized further to retinoic acid via retinal. (C) 2000 Elsevier B.V.
Resumo:
Cathodic stripping voltammetry (CSV) and accumulation at the hanging mercury drop electrode are reviewed briefly. Proposals in a recent IUPAC technical report are considered. Three recent developments in CSV are discussed: the adaptation of CSV methods developed for use with the hanging mercury drop electrode for use with screen-printed carbon electrodes in disposable sensors, the use of reactive accumulation, and the chemometric use of kinetic methods of determination with pulse methods in CSV.
Resumo:
Based on our studies of the stability of model peptide-resin linkage in acid media, we previously proposed a rule for resin selection and a final cleavage protocol applicable to the N-alpha-tert-butyloxycarbonyl (Boc)-peptide synthesis strategy. We found that incorrect choices resulted in decreases in the final synthesis yield, which is highly dependent on the peptide sequence, of as high as 30%. The present paper continues along this line of research but examines the N-alpha-9-fluorenylmethyloxycarbonyl (Fmoc)-synthesis strategy. The vasoactive peptide angiotensin II (All, DRVYIHPF) and its [Gly(8)]-All analogue were selected as model peptide resins. Variations in parameters such as the type of spacer group (linker) between the peptide backbone and the resin, as well as in the final acid cleavage protocol, were evaluated. The same methodology employed for the Boc strategy was used in order to establish rules for selection of the most appropriate linker-resin conjugate or of the peptide cleavage method, depending on the sequence to be assembled. The results obtained after treatment with four cleavage solutions and with four types of linker groups indicate that, irrespective of the circumstance, it is not possible to achieve complete removal of the peptide chains from the resin. Moreover, the Phe-attaching peptide at the C-terminal yielded far less cleavage (50-60%.) than that observed with the Gly-bearing sequences at the same position (70-90%). Lastly, the fastest cleavage occurred with reagent K acid treatment and when the peptide was attached to the Wang resin.
Resumo:
Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The reactions of the pseudohalide-bridged dimer [Pd(N,C-dmba)(mu -SCN)](2) (1) (dmba = N,N-dimethylbenzylamine) with cis-Ph2PCH=CHPPh2 (cis-dppet) (1:1 molar ratio) and of [Pd(N,C-dmba)(mu -NCO)](2) (2) with Ph2PCH2CH2PPh2 (dppe) (1:2 molar ratio) gave mononuclear [Pd(C-dmba)(SCN)(cis-dppet)].H2O (1a) and [Pd(C-dmba)(NCO)(dppe)] (2a), respectively, with the diphosphines acting as chelating ligands. Reaction of (2) with Fe(C5H4PPh2)(2) (dppf) (1:1 molar ratio) yielded [{Pd(N,C-dmba)(NCO)}(2)(mu -dppf)] (2b), a bimetallic species containing two palladium atoms bridged by the diphosphine, whereas reaction in a 1:2 molar ratio gave the mononuclear [Pd(N,C-dmba)(dppf)][NCO]. CH2Cl2 (2c), with the diphosphine acting as a chelating ligand. The compounds have been characterized by elemental analysis, i.r., P-31{H-1}, C-13- and H-1-n.m.r. spectroscopies. Conductivity measurements together with spectroscopic data showed that (1a) and (2a) do not have the same structure in the solid state and in MeCl solution, whereas for compounds (2b) and (2c) no structural changes were observed when the solids were dissolved in MeCl.
Resumo:
Cromoglycate is accumulated on a poly-L-lysine (PLL) modified carbon electrode best from pH 4 solution, where it is anionic and the PLL is cationic, and at which pH the cromoglycate gives a good reduction peak at -0.82 V. The PLL film can be regenerated readily by washing the electrode with 3 M sodium hydroxide solution, in which the PLL is deprotonated. Regeneration of the film is not required as frequently when larger amounts of PLL are incorporated into it. This allows standard addition procedures to be carried out without regenerating the electrode. Linear calibration graphs have been obtained typically in the range 0.1 - 1.5 mug ml(-1). Detection limits have been calculated to be 10 ng ml(-1). The standard addition method has been applied satisfactorily to diluted urine solutions. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Two reactive dyes, C.I. Reactive Red 120 (RR120) and C.I. Reactive Green 19 (RG19), each bearing two azo groups as the chromophoric moiety and two monochloro-s-triazine groups as reactive groups, can be detected at nanomolar levels using cathodic stripping voltammetry. Linear calibration graphs were obtained for both reactive dyes, from 0.015 to 0.14 mu mol l(-1) for RR120 in pH 4 buffer and from 0.012 to 0.26 mu mol l(-1) for RG19 in pH 3 buffer, using a preconcentration at 0 V during 180 and 240 s on the mercury electrode, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Excessive and chronic alcohol intake leads to a lower hepatic vitamin A status by interfering with vitamin A metabolism. Dietary provitamin A carotenoids can be converted into vitamin A mainly by carotenoid 15,15′-monooxygenase 1 (CMO1) and, to a lesser degree, carotenoid 9′10′-monooxygenase 2 (CMO2). CMO1 has been shown to be regulated by several transcription factors, such as the PPAR, retinoid X receptor, and thyroid receptor (TR). The regulation of CMO2 has yet to be identified. The impact of chronic alcohol intake on hepatic expressions of CMO1 and CMO2 and their related transcription factors are unknown. In this study, Fischer 344 rats were pair-fed either a liquid ethanol Lieber-DeCarli diet (n = 10) or a control diet (n = 10) for 11 wk. Hepatic retinoid concentration and expressions of CMO1, CMO2, PPARγ, PPARα, and TRβ as well as plasma thyroid hormones levels were analyzed. We observed that administering alcohol decreased hepatic retinoid levels but increased mRNA concentrations of CMO1, CMO2, PPARγ, PPARα, and TRβ and upregulated protein levels of CMO2, PPARγ, and PPARα. There was a positive correlation of PPARγ with CMO1(r = 0.89; P<0.0001) and both PPARγ and PPARα with CMO2 (r = 0.72, P< 0.001 and r = 0.62, P< 0.01, respectively). Plasma thyroid hormone concentrations did not differ between the control rats and alcohol-fed rats. This study suggests that chronic alcohol intake significantly upregulates hepatic expression of CMO1 and, to a much lesser extent, CMO2. This process may be due to alcohol-induced PPARγ expression and lower vitamin A status in the liver. © 2010 American Society for Nutrition.
Resumo:
Complexes of the type [PdX(PPh3)(1)]X [1 = 4-phenyl-3- thiosemicarbazide; X = Cl- (2), Br- (3), I- (4), and SCN- (5)] have been synthesized and characterized by elemental analyses and IR, UV/Vis, and 1H and 13C NMR spectroscopy. The molecular structure of complex 4 was determined by single-crystal X-ray diffraction. The binding of the complexes with a purine base (guanosine) was investigated by 1H NMR spectroscopy and mass spectrometry, which showed the complexes to coordinate to guanosine through N7. A gel electrophoresis assay demonstrated the ability of 2-5 to cleave DNA plasmid. All the complexes were tested in vitro by means of the MTT assay for their cytotoxicity against two murine cell lines, LM3 (mammary adenocarcinoma) and LP07 (lung adenocarcinoma), and compared with cisplatin. Complexes 2-5 exhibited good cytotoxicity that surpasses that of cisplatin in the case of LM3. A series of thiosemicarbazide/phosphane palladium(II) complexes have been synthesized and fully characterized. These complexes are able to cleave DNA plasmid and show cytotoxicity against adenocarcinoma (mammary LM3 and lung LP07), surpassing the cytotoxicity of cisplatin in the case of LM3. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.