26 resultados para Bacterial Proteins


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assays were done under greenhouse conditions in order to evaluate the effect of pyraclostrobin (0.0375, 0.0750 and 0.150 mL.L-1) and acibenzolar-S-methyl (ASM) (0.025 g.L-1) in common bacterial blight on leaves of snap beans cultivar Braganca. These chemicals were sprayed at three different times: five days before; five days before + five days after; and five days after leaf inoculation with an isolate of Xanthomonas axonopodis pv. phaseoli. They were determinate the levels of polyphenoloxidase, peroxidase and total soluble proteins on inoculated and non-inoculated leaves of snap beans sprayed with pyraclostrobin (0.075 g.L-1) and ASM (0.025 g.L-1). All concentration of pyraclostrobin and ASM reduced the area under the disease progress curve (AUDPC) on leaves of snap beans, and the least AUDPC value was observed when this products were sprayed five days before + five days after inoculation. Higher levels of polyphenoloxidase, peroxidase and the total soluble proteins were observed on leaves sprayed with pyraclostrobin or ASM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Giardia duodenalis isolates from asymptomatic or symptomatic patients and from animals present similarities and differences in the protein composition, antigenic profile, pattern of proteases and isoenzymes, as well as in nucleic acids analysis. In the present overview, these differences and similarities are reviewed with emphasis in the host-parasite interplay and possible mechanisms of virulence of the protozoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that this synergy is a simple consequence of the larger diameter and lower net charge density of the protein-DNA filaments as compared to naked DNA, and hence, should be quite general. To illustrate this generality, we use light-scattering to show that the 7kDa basic archaeal nucleoid protein Sso7d from Sulfolobus solfataricus (known to sharply bend DNA) likewise does not significantly condense DNA by itself. However, the resulting protein-DNA fibers are again highly susceptible to crowding-induced condensation. Clearly, if DNA-bending nucleoid proteins fail to condense DNA in dilute solution, this does not mean that they do not contribute to DNA condensation in the context of the crowded living cell. © 2007 World Scientific Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)