51 resultados para Automatic Gridding of microarray images


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the accuracy of Image Tool Software 3.0 (ITS 3.0) to detect marginal microleakage using the stereomicroscope as the validation criterion and ITS 3.0 as the tool under study.Materials and Methods: Class V cavities were prepared at the cementoenamel junction of 61 bovine incisors, and 53 halves of them were used. Using the stereomicroscope, microleakage was classified dichotomously: presence or absence. Next, ITS 3.0 was used to obtain measurements of the microleakage, so that 0.75 was taken as the cut-off point, and values equal to or greater than 0.75 indicated its presence, while values between 0.00 and 0.75 indicated its absence. Sensitivity and specificity were calculated by point and given as 95% confidence interval (95% CI).Results: The accuracy of the ITS 3.0 was verified with a sensitivity of 0.95 (95% CI: 0.89 to 1.00) and a specificity of 0.92 (95% CI: 0.84 to 0.99).Conclusion: Digital diagnosis of marginal microleakage using ITS 3.0 was sensitive and specific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer systems are used to support breast cancer diagnosis, with decisions taken from measurements carried out in regions of interest (ROIs). We show that support decisions obtained from square or rectangular ROIs can to include background regions with different behavior of healthy or diseased tissues. In this study, the background regions were identified as Partial Pixels (PP), obtained with a multilevel method of segmentation based on maximum entropy. The behaviors of healthy, diseased and partial tissues were quantified by fractal dimension and multiscale lacunarity, calculated through signatures of textures. The separability of groups was achieved using a polynomial classifier. The polynomials have powerful approximation properties as classifiers to treat characteristics linearly separable or not. This proposed method allowed quantifying the ROIs investigated and demonstrated that different behaviors are obtained, with distinctions of 90% for images obtained in the Cranio-caudal (CC) and Mediolateral Oblique (MLO) views.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feed-forward neural networks (FFNNs) were used to predict the skeletal type of molecules belonging to six classes of terpenoids. A database that contains the (13)C NMR spectra of about 5000 compounds was used to train the FFNNs. An efficient representation of the spectra was designed and the constitution of the best FFNN input vector format resorted from an heuristic approach. The latter was derived from general considerations on terpenoid structures. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cleidocranial dysplasia (CCD) is a rare syndrome usually caused by an autosomal dominant gene, although 40% of cases of CCD appear spontaneously with no apparent genetic cause. This condition is characterized by several cranial malformations and underdevelopment, absence of the clavicles, and multiple supernumerary and impacted permanent teeth. The diagnosis of this condition is usually based on the presence of the main features (supernumerary teeth, partial or total absence of one or both the clavicles, and bony malformations) and on clinical and familial evidence. The bony and dental features of CCD may be visualized on radiographic images of the face and skull. Here, we present a familial case of CCD and discuss the importance of dental radiographs in diagnosis of the condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is the development of computational tools in order to assist the on-line automatic detection of burn in the surface grinding process. Most of the parameters currently employed in the burning recognition (DPO, FKS, DPKS, DIFP, among others) do not incorporate routines for automatic selection of the grinding passes, therefore, requiring the user's interference for the choice of the active region. Several methods were employed in the passes extraction; however, those with the best results are presented in this article. Tests carried out in a surface-grinding machine have shown the success of the algorithms developed for pass extraction. Copyright © 2007 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of the present work is to verify the applicability of the Immersed Boundary Method together with the Virtual Physical Model to solve the flow through automatic valves of hermetic compressors. The valve was simplified to a two-dimensional radial diffuser, with diameter ratio of D/d = 1.5, and simulated for a one cycle of opening and closing process with a imposed velocity of 3.0 cm/s for the reed, dimensionless gap between disks in the range of 0.07 < s/d < 0.10, and inlet Reynolds number equal to 1500. The good results obtained showed that the methodology has great potential as project tool for this type of valve systems. © The Authors, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that γ 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of γ 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. © 2012 Taylor & Francis Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent fingerprints are routinely found at crime scenes due to the inadvertent contact of the criminals' finger tips with various objects. As such, they have been used as crucial evidence for identifying and convicting criminals by law enforcement agencies. However, compared to plain and rolled prints, latent fingerprints usually have poor quality of ridge impressions with small fingerprint area, and contain large overlap between the foreground area (friction ridge pattern) and structured or random noise in the background. Accordingly, latent fingerprint segmentation is a difficult problem. In this paper, we propose a latent fingerprint segmentation algorithm whose goal is to separate the fingerprint region (region of interest) from background. Our algorithm utilizes both ridge orientation and frequency features. The orientation tensor is used to obtain the symmetric patterns of fingerprint ridge orientation, and local Fourier analysis method is used to estimate the local ridge frequency of the latent fingerprint. Candidate fingerprint (foreground) regions are obtained for each feature type; an intersection of regions from orientation and frequency features localizes the true latent fingerprint regions. To verify the viability of the proposed segmentation algorithm, we evaluated the segmentation results in two aspects: a comparison with the ground truth foreground and matching performance based on segmented region. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols (outline only and all-boundary lines).Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %.The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24).During the designing of a virtual 3D reconstruction, both outline only and all-boundary lines segmentation protocols can be used.Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.