121 resultados para Atomic Units
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the study was to verify the influence of surface sealants on the surface roughness of resin composite restorations before and after mechanical toothbrushing, and evaluate the superficial topography using atomic force microscope. Five surface sealers were used: Single Bond, Opti Bond Solo Plus, Fortify, Fortify Plus and control, without any sealer agent. The lowest values of surface roughness were obtained for control, Single Bond and Fortify groups before toothbrushing. Fortify and Fortify Plus were the sealer agents that support the abrasive action caused by the toothbrushing although Fortify Plus group remained with high values of surface roughness. The application of specific surface sealants could be a useful clinical procedure to maintain the quality of resin-based composite restorations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This in vitro study evaluated the marginal gap at the composite tooth/resin interface in class V cavities under the influence of two insertion techniques and a curing system by means of atomic force microscopy (AFM). Forty enamel and dentin cavities were prepared on the buccal surface in bovine teeth with quadratic forms measuring 2 mm X 2 mm and depth of 1.5 mm. The teeth were then divided into four groups: group A, 10 cavities were restored in one increment, light cured by halogen light; group B, 10 cavities filled with bulk filling, light cured by the light emitting diodes (LED); group C, 10 cavities were restored by the incremental technique, light cured by halogen light; group D, 10 cavities were restored by the incremental technique, light cured by the LED. The teeth underwent the polishing procedure and were analyzed by AFM for tooth/restoration interface evaluation. The data were compared between groups using the nonparametric Kruskall-Wallis and Mann-Whitney tests (p < 0.05). The results showed a statistically significant difference between groups A and B and groups A and C. It was concluded that no insertion and polymerization technique was able to completely seal the cavity.
Resumo:
The purpose of this study was to evaluate the polymerization effectiveness of a composite resin (Z-250) utilizing microhardness testing. In total, 80 samples with thicknesses of 2 and 4 mm were made, which were photoactivated by a conventional halogen light-curing unit, and light-curing units based on LED. The samples were stored in water distilled for 24 h at 37C. The Vickers microhardness was performed by the MMT-3 microhardness tester. The microhardness means obtained were as follows: G1, 72.88; G2, 69.35; G3, 67.66; G4, 69.71; G5, 70.95; G6, 75.19; G7, 72.96; and G8, 71.62. The data were submitted to an analysis of variance (ANOVA's test), adopting a significance level of 5%. The results showed that, in general, there were no statistical differences between the halogen and LED light-curing units used with the same parameters.
Resumo:
The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical slot cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups (n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer's instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55A degrees C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar (P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.
Resumo:
Cellulose chemically modified with p-aminobenzoic groups, abbreviated as Cel-PAB, was used for preconcentration of copper, iron, nickel, and zinc from ethanol fuel, normally used in Brazil as engine fuel. The surface characteristics and the surface area of the cellulose were obtained before and after chemical modification using FT-IR, elemental analysis, and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques.
Resumo:
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish. Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were deter-mined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence in situ hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively, An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA. The presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light- emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.
Resumo:
In the present report, we review recent investigations that we have conducted on the stability of atomic condensed systems, when the two-body interaction is attractive. In particular, the dynamics that occurs in the condensate due to nonconservative terms is considered in the context of an extension of the mean-field Gross-Pitaevskii approximation. Considering the relative intensity of the nonconservative parameters, chaotic and solitonic solutions are verified. Also discussed is the possibility of a liquid-gas phase transition in the presence of positive three-body elastic collisions.