25 resultados para Alternant code
Resumo:
DNA barcoding facilitates the identification of species and the estimation of biodiversity by using nucleotide sequences, usually from the mitochondrial genome. Most studies accomplish this task by using the gene encoding cytochrome oxidase subunit I (COI; Entrez COX1). Within this barcoding framework, many taxonomic initiatives exist, such as those specializing in fishes, birds, mammals, and fungi. Other efforts center on regions, such as the Arctic, or on other topics, such as health. DNA barcoding initiatives exist for all groups of vertebrates except for amphibians and nonavian reptiles. We announce the formation of Cold Code, the international initiative to DNA barcode all species of these 'cold-blooded' vertebrates. The project has a Steering Committee, Coordinators, and a home page. To facilitate Cold Code, the Kunming Institute of Zoology, Chinese Academy of Sciences will sequence COI for the first 10 specimens of a species at no cost to the steward of the tissues. © 2012 Blackwell Publishing Ltd.
Resumo:
Currently, there has been an increasing demand for operational and trustworthy digital data transmission and storage systems. This demand has been augmented by the appearance of large-scale, high-speed data networks for the exchange, processing and storage of digital information in the different spheres. In this paper, we explore a way to achieve this goal. For given positive integers n,r, we establish that corresponding to a binary cyclic code C0[n,n-r], there is a binary cyclic code C[(n+1)3k-1,(n+1)3k-1-3kr], where k is a nonnegative integer, which plays a role in enhancing code rate and error correction capability. In the given scheme, the new code C is in fact responsible to carry data transmitted by C0. Consequently, a codeword of the code C0 can be encoded by the generator matrix of C and therefore this arrangement for transferring data offers a safe and swift mode. © 2013 SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The internet as well as all technologies arising from it are transforming and changing socially and economically, the forms of relationships between people and organizations. The environment of digital mobile communication is on the rise, allowing more communication strategies in public relations to be enhanced, in order to allow effective dialogue, relationship and interaction between organizations and their stakeholders. Accordingly, the purpose of this paper is to analyze digital communications, especially a locative media tool that has been gaining ground in communication activities: Quick Response Code. So in addition to conceptualize and contextualize it, one tried to map out various campaigns, both national and international, who made use of the QR Code, highlighting the strategic role that this tool can have in Integrated PR planning, in order to create visibility and to establish effective and lasting relationships with the brand / organization
Resumo:
This study establishes that for a given binary BCH code C0 n of length n generated by a polynomial g(x) ∈ F2[x] of degree r there exists a family of binary cyclic codes {Cm 2m−1(n+1)n}m≥1 such that for each m ≥ 1, the binary cyclic code Cm 2m−1(n+1)n has length 2m−1(n + 1)n and is generated by a generalized polynomial g(x 1 2m ) ∈ F2[x, 1 2m Z≥0] of degree 2mr. Furthermore, C0 n is embedded in Cm 2m−1(n+1)n and Cm 2m−1(n+1)n is embedded in Cm+1 2m(n+1)n for each m ≥ 1. By a newly proposed algorithm, codewords of the binary BCH code C0 n can be transmitted with high code rate and decoded by the decoder of any member of the family {Cm 2m−1(n+1)n}m≥1 of binary cyclic codes, having the same code rate.
Resumo:
Corresponding to $C_{0}[n,n-r]$, a binary cyclic code generated by a primitive irreducible polynomial $p(X)\in \mathbb{F}_{2}[X]$ of degree $r=2b$, where $b\in \mathbb{Z}^{+}$, we can constitute a binary cyclic code $C[(n+1)^{3^{k}}-1,(n+1)^{3^{k}}-1-3^{k}r]$, which is generated by primitive irreducible generalized polynomial $p(X^{\frac{1}{3^{k}}})\in \mathbb{F}_{2}[X;\frac{1}{3^{k}}\mathbb{Z}_{0}]$ with degree $3^{k}r$, where $k\in \mathbb{Z}^{+}$. This new code $C$ improves the code rate and has error corrections capability higher than $C_{0}$. The purpose of this study is to establish a decoding procedure for $C_{0}$ by using $C$ in such a way that one can obtain an improved code rate and error-correcting capabilities for $C_{0}$.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)