64 resultados para Algebraic Geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algebraic matrix hierarchy approach based on affine Lie sl(n) algebras leads to a variety of 1 + 1 soliton equations. By varying the rank of the underlying sl(n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy.The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time Bows which distinguishes them From the conventional structure of the Darboux-Backlund-Wronskian solutions of the constrained KP hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use the singularity method of Koschorke [2] to study the question of how many different nonstable homotopy classes of monomorphisms of vector bundles lie in a stable class and the percentage of stable monomorphisms which are not homotopic to stabilized nonstable monomorphisms. Particular attention is paid to tangent vector fields. This work complements some results of Koschorke [3; 4], Libardi-Rossini [7] and Libardi-do Nascimento-Rossini [6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Husserl left many unpublished drafts explaining (or trying to) his views on spatial representation and geometry, such as, particularly, those collected in the second part of Studien zur Arithmetik und Geometrie (Hua XXI), but no completely articulate work on the subject. In this paper, I put forward an interpretation of what those views might have been. Husserl, I claim, distinguished among different conceptions of space, the space of perception (constituted from sensorial data by intentionally motivated psychic functions), that of physical geometry (or idealized perceptual space), the space of the mathematical science of physical nature (in which science, not only raw perception has a word) and the abstract spaces of mathematics (free creations of the mathematical mind), each of them with its peculiar geometrical structure. Perceptual space is proto-Euclidean and the space of physical geometry Euclidean, but mathematical physics, Husserl allowed, may find it convenient to represent physical space with a non-Euclidean structure. Mathematical spaces, on their turn, can be endowed, he thinks, with any geometry mathematicians may find interesting. Many other related questions are addressed here, in particular those concerning the a priori or a posteriori character of the many geometric features of perceptual space (bearing in mind that there are at least two different notions of a priori in Husserl, which we may call the conceptual and the transcendental a priori). I conclude with an overview of Weyl's ideas on the matter, since his philosophical conceptions are often traceable back to his former master, Husserl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value , the average number of points in the universe, is finite in one phase and diverges in the other. Moreover, the dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of is discussed and an upper bound is found, < 2. We also address another discrete model defined on a fixed d = 1 dimension, where topology fluctuates. We comment on a possible spontaneous localization of topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so-generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider certain quadrature rules of highest algebraic degree of precision that involve strong Stieltjes distributions (i.e., strong distributions on the positive real axis). The behavior of the parameters of these quadrature rules, when the distributions are strong c-inversive Stieltjes distributions, is given. A quadrature rule whose parameters have explicit expressions for their determination is presented. An application of this quadrature rule for the evaluation of a certain type of integrals is also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the geometric treatment done for the Majorana-Weyl fermions in two dimensions by Sanielevici and Semenoff to chiral bosons on a circle. For this case we obtain a generalized Floreanini-Jackiw Lagrangian density, and the corresponding gravitational (or Virasoro) anomalies are found as expected. © 1989 The American Physical Society.