76 resultados para ANTIMONY OXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tin dioxide is an n-type semiconductor, which exhibits varistor behavior with high capacity of absorption of energy, whose function is to restrict transitory over-voltages without being destroyed, when it is doped with some oxides. Varistors are used in alternated current fields as well as in continuous current, and it can be applied in great interval of voltages or in great interval of currents. The electric properties of the varistor depend on the defects that happen at the grain boundaries and the adsorption of oxygen. The (98.90-x)%SnO2.0.25%CoO+0.75%MnO2+0.05%Ta2O5+0.05%Tr2O3 systems, in which Tr=La or Nd. Current-voltage measurements were accomplished for determination of the non-linear coefficient were studied. SEM microstructure analysis was made to evaluate the microstructural characteristics of the systems. The results showed that the rare-earth oxides have influenced the electrical behavior presented by the system. (C) 2002 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide thin films doped with 7 mol% antimony oxide multilayer were prepared by the polymeric precursor method. Morphological characterization revealed films with round-shaped grains, nanometric size (similar to 13 nm), and low roughness. These films display high transmittance (similar to 80%) in the visible range of transmittance spectra, which is desirable for transparent conductive oxide films. Analysis on electrical resistivity versus temperature data showed two different conduction mechanisms toward the temperature range. The gas sensor properties measurement of the thicker thin film revealed good sensibility for the NOx. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photocontraction effect in amorphous films of the binary glass system 0.20 [Sb(PO3)(3)](n)-0.80 Sb2O3 has been observed after UV irradiation using the 350.7 nm Kr+ ion laser line with 5.0 W/cm(2). Good optical quality films up to 4.0 mum were deposited on silica substrates at room temperature in vacuum by electron beam physical vapor deposition (EB-PVD) and characterized using WDX, XRD, optical absorption, infrared reflectance, profilometry and atomic force microscopy (AFM) techniques. Very stable glasses were prepared by the melt quenching technique and used as evaporation source for the production of films. The photoinduced structural change (PSC) was observed as a variation of about 6% in the film thickness and this effect is accompanied by a photobleaching of the irradiated area with a blue shift of the optical absorption edge. Otherwise this photoinduced change in the film thickness is very sensitive to the variations in the shape and intensity of the laser beam; therefore several possibilities in optical recording arise from these results. (C) 2003 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous thin films, based on different network formers, were processed by a soft chemical process called the polymeric precursor method. The resultant amorphous metal oxides, displayed intense photoluminescence (PL) at room temperature. Heat treatment increases the PL intensity of these materials. Theoretical ab initio calculations are correlated with the observed experimental trends. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of the nonresonant nonlinear refractive index n(2) in antimony glasses at telecom wavelengths. The measurements were performed using the Z-scan technique with a 130 fs pulsed laser operating at five wavelengths in the range of 1400-1600 nm. Values of n(2)approximate to 10(-15) cm(2)/W were measured and a negligible two-photon absorption coefficient (< 0.003 cm/GW) was estimated for all glasses compositions. The samples present a good figure of merit for ultrafast all-optical switching. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass formation has been investigated in binary systems based on antimony oxide as the main glass former: (100-x)Sb2O3-xWO3, (5 < x < 65), (100 - x)Sb2O3-xSbPO(4), (5 < x < 80) and (100 - x)Sb2O3-x[Sb(PO3)(3)](n), (10 < x < 40). Ternary systems derived from the Sb2O3-WO3 binary glass have also been studied: Sb2O3-WO3-BaF2 Sb2O3-WO3-NaF and Sb2O3-WO3-[Sb(PO3)(3)](n). Glass transition temperature ranges from 280 degreesC to 380 degreesC. It increases as the concentration in tungsten oxide or antimony phosphate increases. Refractive index is larger than 2. Tungsten-containing glasses are yellow in transmission and turn green at the largest WO3 content. Optical transmission and temperatures of glass transition, T-g, onset of the crystallization. T-x, and maximum of crystallization, T-p, have been measured using differential scanning calorimetry (DSC). These glasses have potential photonic applications. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we demonstrated the fabrication of two-dimensional (2D) photonic crystals layers (2D-PCLs) by combining holographic recording and the evaporation of antimony-based glasses. Such materials present high refractive indices that can be tuned from 1.8 to 2.4, depending on the film composition; thus, they are interesting dielectric materials for fabrication of 2D-PCLs. The good quality of the obtained samples allowed the measurement of their PC properties through the well-defined Fano resonances that appear in the transmittance spectrum measurements at different incidence angles. The experimental results are in good agreement with the calculated band diagram for the hexagonal asymmetric structure. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle-growth kinetics of sodium niobate and zirconium titanate powders that were processed by the polymeric precursors method were studied. The growth kinetics that were studied for the particle, in the final stage of crystallization, showed that the growth process occurs in two different stages. For temperatures <800°C, the particle-growth mechanism is associated with surface diffusion, with an activation energy in the range of 40-80 KJ/mol. For temprratures >800°C, particle growth is controlled by densification of the nanometric particle cluster and by a neck-size-controlled particle-growth mechanism. The results suggest that this behavior was typical of the synthesis method, because two different polycation oxides presented the same behavior.