69 resultados para ANNEXIN A1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1-/- mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach. Copyright © 2013 by The American Association of Immunologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endometriosis is a continuous and progressive disease with a poorly understood aetiology, pathophysiology and natural history. This study evaluated the histological differences between eutopic and ectopic endometria (abdominal wall endometriosis) and the expression of mast cell proteases (tryptase and chymase), annexin A1 (ANXA1) and formyl peptide receptor 1 (FPR1). Ectopic endometrium from 18 women with abdominal wall endometriosis and eutopic endometrium from 10 women without endometriosis were obtained. The endometrial samples were analysed by histopathology, immunohistochemistry and ultrastructural immunogold labeling to determine mast cell heterogeneity (tryptase and chymase positive cells) and the expression levels of ANXA1 and FPR1. Histopathological analysis of the endometriotic lesions showed a glandular pattern of mixed differentiation and an undifferentiated morphology with a significant influx of inflammatory cells and a change in mast cell heterogeneity, as evidenced by a significant increase in the number of chymase-positive cells and endogenous chymase expression. The undifferentiated glandular pattern of endometriotic lesions was positively associated with a marked increase and co-localization of ANXA1 and FPR1 in the epithelial cells. In conclusion, the co-upregulated expression of mast cell chymase and ANXA1–FPR1 system in ectopic endometrium suggests their involvement in the development of endometriotic lesions.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunosuppressive drugs have a critical role in inhibiting tissue damage and allograft rejection.Studies have demonstrated the anti-infl ammatory effects of the annexin A1 (AnxA1) in the regulationof transmigration and apoptosis of leucocytes. In the present study, an experimental skin allograftmodel was used to evaluate a potential protective effect of AnxA1 in transplantation survival. Micewere used for the skin allograft model and pharmacological treatments were carried out using eitherthe AnxA1 mimetic peptide Ac2-26, with or without cyclosporine A (CsA), starting 3 days beforesurgery until rejection. Graft survival, skin histopathology, leucocyte transmigration and expressionof AnxA1 and AnxA5 post-transplantation were analysed. Pharmacological treatment with Ac2-26increased skin allograft survival related with inhibition of neutrophil transmigration and inductionof apoptos is, thereby reducing the tissue damage compared with control animals. Moreover, AnxA1and AnxA5 expression increased after Ac2-26 treatment in neutrophils. Interestingly, thecombination of Ac2-26 and cyclosporine A showed similar survival of transplants when compared withthe cyclosporine A group, which could be attributed to a synergistic effect of both drugs. Investigationsin vitro revealed that cyclosporine A inhibited extracellular-signal-regulated kinase (ERK) phosphory-lation induced by Ac2-26 in neutrophils. Overall, the results suggest that AnxA1 has an essential role inaugmenting the survival of skin allograft, mainly owing to inhibition of neutrophil transmigration andenhancement of apoptosis. This effect may lead to the development of new therapeutic approachesrelevant to transplant rejection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The inflammatory response is a protective process of the body to counteract xenobiotic penetration and injury, although in disease this response can become deregulated. There are endogenous biochemical pathways that operate in the host to keep inflammation under control. Here we demonstrate that the counter-regulator annexin 1 (AnxA1) is critical for controlling experimental endotoxemia. Lipopolysaccharide (LPS) markedly activated the AnxA1 gene in epithelial cells, neutrophils, and peritoneal, mesenteric, and alveolar macrophages-cell types known to function in experimental endotoxemia. Administration of LPS to AnxA1-deficient mice produced a toxic response characterized by organ injury and lethality within 48 hours, a phenotype rescued by exogenous application of low doses of the protein. In the absence of AnxA1, LPS generated a deregulated cellular and cytokine response with a marked degree of leukocyte adhesion in the microcirculation. Analysis of LPS receptor expression in AnxA1-null macrophages indicated an aberrant expression of Toll-like receptor 4. In conclusion, this study has detailed cellular and biochemical alterations associated with AnxA1 gene deletion and highlighted the impact of this protective circuit for the correct functioning of the homeostatic response to sublethal doses of LPS. Copyright © American Society for Investigative Pathology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Genética - IBILCE