632 resultados para Endodontic cements
Resumo:
The purpose of this study was to compare the incidence of dentinal defects (fractures and craze lines) after canal preparation with different nickel-titanium rotary files. Two hundred sixty mandibular premolars were selected. Forty teeth were left unprepared (n = 40). The other teeth were prepared either with manual Flexofiles (n = 20) or with different rotary files systems: ProTaper (Dentsply-Maillefer, Ballaigues, Switzerland), ProFile (Dentsply-Maillefer), SystemGT (Dentsply-Maillefer), or S-ApeX (FKG Dentaire, La Chaux-de-Fonds, Switzerland) (n = 50 each). Roots were then sectioned 3, 6, and 9 mm from the apex and observed under a microscope. The presence of dentinal defects was noted. There was a significant difference in the appearance of defects between the groups (p < 0.05). No defects were found in the unprepared roots and those prepared with hand files and S-ApeX. ProTaper, ProFile, and GT preparations resulted in dentinal defects in 16%, 8%, and 4% of teeth, respectively. Some endodontic preparation methods might damage the root and induce dentinal defects. (J Endod 2009;35:236-238)
Resumo:
Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim To evaluate differences between anatomic and radiographic measurements of root canal wall thickness (RCWT) after each root canal preparation stage during post placement.Methodology Twenty mandibular premolars with a single canal were decoronated and the roots embedded in resin using a teflon muffle. Roots were sectioned horizontally at a pre-established level and canals were prepared for post placement. Endodontic hand files were used for root canal preparation, followed by Gates Glidden drills and Peeso reamers. Standardized radiographs and photographs at pre-established measurement levels were taken before preparation, after root canal instrumentation, after Gates Glidden preparation and after Peeso enlargement. All images were digitized and RCWT at the mesial and distal walls measured (IMAGETOOL 3.0). Differences between radiographic and anatomic measurements were analysed with paired t-tests. ANOVA was used to compare the percentages of radiographic distortions.Results Regardless of the time-point evaluated, RCWT determined by radiographs were greater than the respective anatomic measurements (P < 0.05). The difference detected at each stage was similar and constant (P > 0.05).Conclusions Throughout preparation for post placement, radiographic images overestimated the RCWT by approximately 25%, regardless of the clinical stage evaluated.
Resumo:
This study evaluated the influence of addition of 10% calcium chloride (CaCl(2)) on the setting time, solubility, disintegration, and pH of white MTA (WMTA) and white Portland cement (WPC). A test of the setting time was performed following the #57 ADA specifications and a test of the final setting time according to the ASTM. For the solubility tests disintegration and pH, Teflon rings were filled with the cements and weighed after setting. After 24 h in a desiccator, they were once again weighed. Thereafter, they were immersed in MiliQ water for 24 and 72 h and 7, 14, and 28 days, with maintenance in the desiccator and weighing between periods. The pH of water in which the rings were immersed was measured immediately after contact with them and in the other periods. The addition of CaCl(2) provided a significant reduction (50%) in the initial setting time of cements. The final setting time of WMTA was reduced in 35.5% and the final setting time of WPC in 68.5%. The WMTA with CaCl(2) absorbed water and gained weight with time, except for in the 24-h period. The addition of CaCl(2) to the WPC reduced its solubility. The addition of CaCl(2) increased the pH of WMTA in the immediate period and at 24 and 72 h and for WPC in the immediate period and at 24 h. The addition of CaCl(2) to WMTA and WPC reduced the setting times and solubility of both and increased the pH of cements in the initial periods. (J Endod 2009;35:550-554)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this report is to contribute to a better understanding of the radiographic, clinical and anatomic findings in maxillary second premolars. This paper reports the endodontic treatment of two cases of three-rooted three-canal maxillary second premolars in different patients, and two sound maxillary second premolars also with three canals and three independent roots in a sibling of one of the patients. Although the presence of maxillary second premolars with one or two canals and one root is much more common, other anatomic conditions can be found. A correct clinical and radiographic diagnosis based on knowledge of root canal anatomy and critical interpretation of radiographs is necessary for a safer and successful endodontic treatment of these teeth.
Resumo:
Objective. The purpose of this study was to evaluate the effects of endodontic irrigants on the microhardness of root canal dentin.Study design. Thirty extracted single-rooted human teeth were used. The crowns were sectioned at the cementoenamel junction. Each root was transversely sectioned into cervical, middle, and apical segments, resulting in 90 specimens. The 3 sections of each root were separately mounted in an individual silicon device with acrylic resin. The specimens were randomly divided into the following 3 groups (n = 30), according to the irrigant solution used: (1) group 1, control (saline solution); (2) group 2, 2% chlorhexidine gluconate solution; and (3) group 3, 1% sodium hypochlorite (NaOCl). After 15 minutes of irrigation, dentin microhardness was measured on each section at 500 mu m and 1000 mu m from the pulp-dentin interface with a Vickers diamond microhardness tester in Vickers hardness number (VHN).Results. Data obtained were analyzed using analysis of variance and the Tukey test (5%). Specimens irrigated with 2% chlorhexidine (group 2) or 1% NaOCl (group 3) presented lower values of dentin microhardness, with significant difference in relation to the control group (P < .05).Conclusion. It could be concluded that chlorhexidine and NaOCl solutions significantly reduced the microhardness of root canal dentin at 500 mu m and 1000 mu m from the pulp-dentin interface.
Resumo:
Castor oil bean cement (COB) is a new material that has been used as an endodontic sealer, and is a candidate material for direct pulp capping. Objective: The purpose of this study was to evaluate the biocompatibility of a new formulation of COB compared to calcium hydroxide cement (CH) and a control group without any material, in the subcutaneous tissue of rats. Material and Methods: The materials were prepared, packed into polyethylene tubes, and implanted in the rat dorsal subcutaneous tissue. Animals were sacrificed at the 7th and 50th days after implantation. A quantitative analysis of inflammatory cells was performed and data were subjected to ANOVA and Tukey's tests at 5% significance level. Results: Comparing the mean number of inflammatory cells between the two experimental groups (COB and CH) and the control group, statistically significant difference (p=0.0001) was observed at 7 and 50 days. There were no significant differences (p=0.111) between tissue reaction to CH (382 inflammatory cells) and COB (330 inflammatory cells) after 7 days. After 50 days, significantly more inflammatory cells (p=0.02) were observed in the CH group (404 inflammatory cells) than in the COB group (177 inflammatory cells). Conclusions: These results demonstrate that the COB cement induces less inflammatory response within long periods.
Resumo:
Objective: The purpose of this study was to evaluate the sealing ability of castor oil polymer (COP), mineral trioxide aggregate (MTA) and glass ionomer cement (GIC) as root-end filling materials. Forty-five single-rooted human teeth were cleaned and prepared using a step-back technique. The apical third of each root was resected perpendicularly to the long axis direction. All teeth were obturated with gutta-percha and an endodontic sealer. After, a root-end cavity with 1.25-mm depth was prepared using a diamond bur. The specimens were randomly divided into three experimental groups (n = 15), according to the root-end filling material used: G1) COP; G2) MTA; G3) GIC. The external surfaces of the specimens were covered with epoxy adhesive, except the root-end filling. The teeth were immersed in rhodamine B dye for 24 hours. Then, the roots were sectioned longitudinally and the linear dye penetration at the dentin/material interface was determined using a stereomicroscope. ANOVA and Tukey's tests were used to compare the three groups. The G1 group (COP) presented smaller dye penetration, statistically different than the G2 (MTA) and G3 (GIC) groups (p < 0.05). No statistically significant difference in microleakage was observed between G2 and G3 groups (p > 0.05). The results of this study indicate that the COP presented efficient sealing ability when used as a root-end filling material showing results significantly better than MTA and GIC.
Resumo:
Aim To evaluate ex vivo effectiveness of the three formulations of bleaching materials for intracoronal bleaching of root filled teeth using the walking bleach technique.Methodology Extracted premolar teeth were stained artificially with human blood. After biomechanical preparation, the root canals were filled and a 3-mm thick intermediate base of zinc phosphate cement was placed at the level of the cementoenamel junction. The teeth were divided into four groups (n = 12): C (control, without bleaching material), A1 (sodium perborate + distilled water), A2 (sodium perborate + 10% carbamide peroxide) and A3 (sodium perborate + 35% carbamide peroxide). The bleaching materials were changed at 7 and 14 days. Evaluation of shade was undertaken with aid of the VITA Easyshade (TM) (Delta E*ab) and was performed after tooth staining and at 7, 14 and 21 days after bleaching, based on the CIELAB system. Data were analysed by ANOVA for repeated measurements, Tukey and Dunnett tests (alpha = 0.05).Results The Tukey test revealed that group A1 (10.58 +/- 4.83 Delta E*ab) was statistically different from the others (A2, 19.57 +/- 4.72 Delta E*ab and A3, 17.58 +/- 3.33 Delta E*ab), which were not different from each other. At 7 days: A1 was significantly different from A2; at 14 and 21 days: A2 and A3 were significantly better than A1; the Dunnett test revealed that the control group was different from A1, A2 and A3 at all periods (P < 0.05).Conclusion Sodium perborate associated with both 10% and 35% carbamide peroxide was more effective than when associated with distilled water.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dentin wall structural changes caused by 810-nm-diode laser irradiation can influence the sealing ability of endodontic sealers. The objective of this study was to evaluate the apical leakage of AH Plus and RealSeal resin-based sealers with and without prior diode laser irradiation. Fifty-two single-rooted mandibular premolars were prepared and divided into 4 groups, according to the endodontic sealer used and the use or non-use of laser irradiation. The protocol for laser irradiation was 2.5W, continuous wave in scanning mode, with 4 exposures per tooth. After sample preparation, apical leakage of 50% ammoniacal silver nitrate impregnation was analyzed. When the teeth were not exposed to irradiation, the Real Seal sealer achieved the highest scores, showing the least leakage, with significant differences at the 5% level (Kruskal-Wallis test, p = 0.0004), compared with AH Plus. When the teeth were exposed to the 810-nm-diode laser irradiation, the sealing ability of AH Plus sealer was improved (p = 0282). In the Real Seal groups, the intracanal laser irradiation did not interfere with the leakage index, showing similar results in the GRS and GRSd groups (p = 0.1009).
Resumo:
The success of endodontic treatment depends on the complete elimination of microorganisms from the root canal system, thus the search for new procedures to eliminate them is justified. The aim of this study was to assess bacterial reduction after intracanal irradiation with the Er:YAG laser. The canals of 70 extracted human maxillary canines were prepared up to file #40 using 1% NaOCl, irrigated with 17% EDTA, and then washed with physiological solution activated by ultrasound. The roots were sterilized by autoclaving, inoculated with 10 mu l of a suspension containing 1.5 x 10(8) CFU/ml of Enterococcus faecalis ATCC 29212 and incubated at 37A degrees C for 72 h. The canals were irradiated with the Er:YAG laser using two energy settings: 60 mJ and 15 Hz, and 100 mJ and 10 Hz. The remaining bacteria were counted immediately and 48 h after laser irradiation. The results showed a high bacterial reduction at both time points. With 60 mJ and 15 Hz there was an immediate reduction of 99.73% and the reduction was 77.02% after 48 h, and with 100 mJ and 10 Hz there was an immediate reduction of 99.95% and the reduction was 84.52% after 48 h. Although the best results were observed with 100 mJ of energy, the difference between the two settings was not statistically significant. The count performed 48 h after irradiation showed that E. faecalis were able to survive, and can grow even from small numbers.
Resumo:
Purpose: This study evaluated the bond strength of two etch-and-rinse adhesive systems (two- and three-step) and a self-etching system to Coronal and root canal dentin.Materials and Methods: The root canals of 30 human incisors and canines were instrumented and prepared with burs. The posts used for luting were duplicated with dual resin cement (Duo-link) inside Aestheti Plus #2 molds. Thus, three groups were formed (n = 10) according to the adhesive system employed: All-Bond 2 (TE3) + resin cement post (rcp) + Duo-link (DI); One-Step Plus (TE2) + rcp + DI; Tyrian/One-Step Plus (SE) + rcp + DI. Afterwards, 8 transverse sections (1.5 mm) were cut from 4 mm above the CEJ up to 4 mm short of the root canal apex, comprising coronal and root canal dentin. The sections were submitted to push-out testing in a universal testing machine EMIC (1 mm/min). Bond strength data were analyzed with two-way repeated measures ANOVA and Tukey's test (p < 0.05).Results: The relationship between the adhesives was not the same in the different regions (p < 0.05). Comparison of the means achieved with the adhesives in each region (Tukey; p < 0.05) revealed that TE3 (mean standard deviation: 5.22 +/- 1.70) was higher than TE2 (2.60 +/- 1.74) and SE (1.68 +/- 1.85).Conclusion: Under the experimental conditions, better bonding to dentin was achieved using the three-step etch-and-rinse system, especially in the coronal region. Therefore, the traditional etch-and-rinse three-step adhesive system seems to be the best choice for teeth needing adhesive endodontic restorations.
Resumo:
The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link. BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0 degrees to 15 degrees. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from approximate to 1.5 to 3.2 J/m(2) when the loading angle increases from approximate to 0, 0 to 15 degrees. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces. (C) 2011 Elsevier B.V. All rights reserved.