389 resultados para dielectric thin films
Resumo:
Strontium-modified lead titanate thin films with composition Pb1-xSrxTiO3 were grown on Pt/Ti/SiO2/Si substrates using the polymeric precursor method. The structural phase evolution as a function of the Sr contents was studied using micro-Raman scattering, specular reflectance infrared Fourier transform spectroscopy, and x-ray diffraction. The results showed a gradual change from tetragonal to cubic structure, the transition occurring at about x = 0.58. The infrared reflectance spectra showed that the frequency of several peaks decreases as the strontium concentration increases. These features are correlated with a decrease in the tetragonal distortion of the TiO6 octahedra as the strontium concentration increases.
Resumo:
Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.
Resumo:
Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.
Resumo:
Optical excitation of Ce3+-doped SnO2 thin films, obtained by the sol-gel-dip-coating technique, is carried out and the effects on electrical transport are evaluated. Samples are doped with O. lat% of Ce, just above the saturation limit. The excitation is done with an intensity-controlled halogen-tungsten lamp through an interference filter, yielding an excitation wavelength of 513nm, 9 nm wide (width at half intensity peak). Irradiation at low temperature (25K) yields a conductivity increase much lower than above bandgap light. Such a behavior assures the ionization of intra-bandgap defect levels, since the filter does not allow excitation of electron-hole pairs, what would happen only in the UV range (below about 350nm). The decay of intra-bandgap excited levels in the range 250-320 K is recorded, leading to a temperature dependent behavior related to a thermally excited capture cross section for the dominating defect level. © 2008 American Institute of Physics.
Resumo:
Using pump-probe reflectometry, we study the ultrafast excited-state dynamics in thin films of BuPTCD, an organic semiconductor, deposited on gold nanoparticles. We observe depletion of the ground state and excited state absorption after photo-excitation. © 2008 Optical Society of America.
Resumo:
We present a study on the thin film morphology and the optical properties of eumelanin resulting from different synthesis routes: the oxidation of tyrosine with hydrogen peroxide, the auto-oxidation of dihydroxyphenylanaline in water and its auto-oxidation in dimethyl sulfoxid. Atomic Force Microscopy images indicate that the presence of holes and particles depends on the eumelanin synthesis route and the substrate employed. Smooth films with very few defects could be obtained with eumelanin synthesized in dimethyl sulfoxide deposited on glass substrates. Our study shows that all eumelanin preparations are comparable in terms of thin film morphology on the submicrometer scale and UV-visible transmission properties. ©The Electrochemical Society.
Resumo:
CCTO thin films were deposited on Pt(111)/Ti/SiO 2/Si substrates using a chemical (polymeric precursor) and pressure method. The pressure effects on the CCTO thin films were evaluated by XRD, FEG-SEM and optical properties. Pressure films were found to be more homogeneous and dense than chemical deposition films. Pressure also leaded to an increase in the photoluminescence emission; it is suggested that the displacement of Ti in the titanate clusters, favors the charge transference from TiO 6 to [TiO 5V o z], TiO 5V o z] to [CaO 11V o z] and [TiO 5V o z] to [CuO 4] x. The low synthesis temperature used in the pressure method allows the deposition of films on less expensive substrates (i.e. glass, aluminum, polymer and others).
Resumo:
The influence of benzoyl peroxide (BPO) on the synthesis of polysiloxane thin films doped with Ce(III) deposited onto Sn coated steel as well as their anticorrosion properties are reported. The addition of BPO, whose role is polymerize the film, showed an increase in |Z| values due to the fact that augments the crossed link bonds and therefore improves the protective feature of the film. Ce(III) does not act in the polymerization process and thus is essential the addition of BPO to obtain more resistant polysiloxane films. ©The Electrochemical Society.
Resumo:
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.
Resumo:
Doping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Fabrication and optical characterization of Tm3+/Yb3+ codoped PbO-GeO2 (PGO) pedestal-type waveguides are investigated in this work. It is important to mention that, to the best of authors' knowledge, the use of PGO pedestal-type waveguide has not been studied before. PGO thin films codoped with Tm3+ and Yb3+ were obtained through RF magnetron sputtering technique. The pedestal profile was obtained using conventional optical lithography procedures, followed by plasma etching and sputtering deposition. The profile of Tm3+/Yb3+ codoped PGO waveguides was observed by means of Scanning Electron Microscopy (SEM) measurements. Also the infrared and infrared-to-visible frequency upconversion luminescences of Tm3+ ions were measured exciting the samples with a cw 980 nm diode laser. Propagation losses around 11 dB/cm and 9 dB/cm were obtained at 630 and 1050 nm, respectively, for waveguides in the 20-100 μm width range. Single-mode propagation was observed for waveguides width up to 12 μm and 7 μm, at 1050 nm and 630 nm, respectively; larger waveguides width provided multi-mode propagation. The present results corroborate the possibility of using Tm3+/Yb3+ codoped PGO thin films as active waveguide for photonic applications. © 2013 Elsevier B.V. All rights reserved.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.
Resumo:
Eumelanin is a ubiquitous pigment in the human body, animals, and plants, with potential for bioelectronic applications because of its unique set of physical and chemical properties, including strong UV-vis absorption, mixed ionic/electronic conduction, free radical scavenging and anti-oxidant properties. Herein, a detailed investigation is reported of eumelanin thin films grown on substrates patterned with gold electrodes as a model system for device integration, using electrical measurements, atomic force microscopy, scanning electron microscopy, fluorescence microscopy, and time-of-flight secondary ion mass spectroscopy. Under prolonged electrical biasing in humid air, one can observe gold dissolution and formation of gold-eumelanin nanoaggregates, the assembly of which leads to the formation of dendrites forming conductive pathways between the electrodes. Based on results collected with eumelanins from different sources, a mechanism is proposed for the formation of the nanoaggregates and dendrites, taking into account the metal binding properties of eumelanin. The surprising interaction between eumelanin and gold points to new opportunities for the fabrication of eumelanin-gold nanostructures and biocompatible memory devices and should be taken into account in the design of devices based on eumelanin thin films. © 2013 WILEY-VCH Verlag GmbH & Co.