532 resultados para periodontal ligament fibroblasts
Resumo:
Pathologic tooth migration related to periodontal disease is a common chief complaint of periodontal patients. This paper describes the treatment of a case of severe periodontal disease and disfiguring pathologic migration of maxillary central incisors, which required a multidisciplinary approach. After conventional pert. odontal treatment was performed, the anterior diastema was closed using a combination of orthodontic therapy and restorative treatment. A 6-month follow-up examination of this case revealed resolution of the anterior pathologic migration, with gains in clinical attachment levels and a successful esthetic and functional final result.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Periodontal disease initiation and progression occurs as a consequence of the host immune inflammatory response to oral pathogens. The innate and acquired immune systems are critical for the proper immune response. LPS, an outer membrane constituent of periodontal pathogenic bacteria, stimulates the production of inflammatory cytokines IL-1 beta TNF alpha IL-6 and RANKL either directly or indirectly. In LPS-stimulated cells, the induction of cytokine expression requires activation of several signaling pathways including the p38 MAPK pathway. This review will discuss the significance of the p38 MAPK pathway in periodontal disease progression and the potential therapeutic consequences of pharmacological antagonism of this pathway in the treatment of periodontal diseases.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to evaluate improvement of lipids and periodontal disease in patients with type 2 Diabetes mellitus, by means of the relationship between blood levels of total cholesterol and its fractions, triglycerides and clinical periodontal parameters. Twenty patients, in age-range 18-70 years, were selected and divided into 2 groups: (1) conventional periodontal scaling and root planing + controlled mechanic; (2) conventional periodontal scaling and root planing + controlled mechanical + maintenance therapy. The analyses were performed on day 0, 180 and 720 days, including plaque index, gingival index, probing depth and clinical attachment level, and evaluation of total cholesterol and its fractions, and triglycerides. The 2 groups presented significant reduction in clinical periodontal parameters, however, probing depth did not diminish significantly only in Group 1. There was significant improvement in all blood parameters in both groups. It was concluded that after 720 days of the experiment, there were significant improvements in clinical and blood parameters, in general. The group that received maintenance therapy also showed a more expressive improvement in clinical periodontal parameters, in general, suggesting that this therapy is important and necessary in patients with type 2 Diabetes mellitus and periodontal disease. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
No consensus has yet been reached to associate oral bacteria conclusively with the etio-pathogenesis of bisphosphonate-induced osteonecrosis of the jaw (BONJ). Therefore, the present study examined the effects of oral bacteria on the development of BONJ-like lesions in a mouse model. In the pamidronate (Pam)-treated mice, but not control non-drug-treated mice, tooth extraction followed by oral infection with Fusobacterium nucleatum caused BONJ-like lesions and delayed epithelial healing, both of which were completely suppressed by a broad-spectrum antibiotic cocktail. Furthermore, in both in vitro and in vivo experiments, the combination of Pam and Fusobacterium nucleatum caused the death of gingival fibroblasts (GFs) and down-regulated their production of keratinocyte growth factor (KGF), which induces epithelial cell growth and migration. Therefore, in periodontal tissues pre-exposed to bisphosphonate, bacterial infection at tooth extraction sites caused diminished KGF expression in GFs, leading to a delay in the epithelial wound-healing process that was mitigated by antibiotics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.