255 resultados para bone implant
Resumo:
Maintaining the volume of the alveolar process after extraction can be achieved by immediate implant placement and guided bone regeneration, with or without the use of biomaterials. The authors present a case report with a 10 years follow-up, rehabilitation using osseointegrated implants in the extraction area and maintenance of the volume of the alveolar process with autogenous cortical bone shavings.
Resumo:
The aim of this paper was to present a rehabilitation of a patient with a dynamic universal castable long abutment (UCLA) for a single tilted implant in the anterior maxillary area. A 57-year-old male patient attended the dentistry college clinic complaining of a vertical fracture of a residual root of the dental element 22. The tooth extraction was indicated for the implant installation. Due to the socket buccal wall thickness, the implant was installed with an inclination to the palate. It was done in a two-stage surgical protocol, and an external hexagon implant (3.75×11.5mm) was placed. After a six-month healing period to correct the implant position, a dynamic UCLA was set in place, rectifying the implant emergence profile at 20°. The ceramic structure fitting was performed and, after the patient's consent, the prosthesis was finalized and installed. After a follow-up period of twenty months, no complications were observed. The installation of tilted implants with a dynamic UCLA may be a viable option, faster and less invasive than bone grafts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This case report is an 8-year follow-up of a malpositioned single implant, which was treated with segmental osteotomy, to confirm the treatment's characteristics, indications, and advantages. Deep buccal positioning of an endosseous implant placed in the maxillary left central incisor area did not permit acceptable prosthetic rehabilitation, despite its favorable bone insertion with no significant marginal bone loss. The surgical procedure included osteotomy and block movement performed toward the lingual and cervical position, fixed with a provisional prosthesis and miniplates and mini-implants. A connective tissue graft was necessary for esthetics optimization and was performed in a second stage. Advantages including the prevention of alveolar ridge damage, the improvement of gingival contour, and the use of an already integrated implant are presented. Clinically satisfactory hard and soft tissue stability permitted us to consider segmental surgery as a reliable alternative for malpositioned osseointegrated implants.
Resumo:
For oral rehabilitation with implant-supported prostheses, there are required procedures to create the bone volume needed for installation of the implants. Thus, bone grafts from intraoral or extraoral donor sites represent a very favorable opportunity. This study aimed to review the literature on the subject, seeking to discuss parameters for the indications, advantages and complications of techniques for autogenous bone grafts.
Resumo:
This work aimed to analyze clinically and histologically the allogen bone graft behavior at 6 and 9 months. A leukoderm, female, 55 years old patient sought dental care for oral rehabilitation with dental implants and implant supported fixed prosthesis in the maxilla. Bilateral sinus lifting procedure were performed in a same patient, the analysis were made after 6 and 9 months, respectively. At 6 months, there was lack of a better bone remodeling in the region, associated to the presence of fibrous connective tissue within the collected tissue, showing us that this is not the best stage of tissue maturation to place dental implants. The 9 months period showed an improvement, with a more organized bone tissue surrounding particles of homogenous bone, what possibly had increased implant stability at the time of surgery. There is no doubt about the increase of clinical applications of FFBA, but there are no studies available regarding the standardization of time to load implants inserted in allografts. So papers with long-term monitoring are necessary to eliminate questions that still remain to be answered.
Resumo:
The calvarial bone is highlighted as a good donor area for large reconstructions of atrophic jaw for subsequent rehabilitation with implant-supported prosthesis. The aim of this study was to observe and measure through histological and histometric evaluation, the cellular events that occur at the interface of union from onlay parietal bone graft on the maxilla of 10 patients, after a period of 6 months of incorporation. The biopsies were performed at the time of installation of osseointegrated implants. The bone contact area represented 78.75% and connective contact 21.25%. The region of connective union between the bone graft to the maxillae presented new bone formation (41.26%), marrow bone (36.06%), osteoid tissue (15.86%) and connective tissue (6.80%). All samples had good graft incorporation to the receptor bed with osteogenic activity and absence of inflammatory cells.
Resumo:
Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.
Resumo:
PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.
Resumo:
Processo FAPESP: 2012/24545-3
Resumo:
Background: Considering the limited qualitative and quantitative bone in the posterior arch, this modality of prosthetic treatment could provide a positive emotional factor reestablished by immovability of the anterior fixed implant-supported segment. Objective: This clinical report demonstrates the possibility of achieving positive results with a removable partial denture connected to an implant-supported fixed prosthesis associated to an extra resilient attachment. Clinical significance: In cases of posterior mandibular and maxilla atrophy added to the patients desire against the bone graft, this kind of prosthetic treatment has an important place as an alternative.
Resumo:
The alveolar ridge shape plays an important role in predicting the demand on the support tooth and alveolar bone in the removable partial denture (RPD) treatment. However, these data are unclear when the RPD is associated with implants. This study evaluated the influence of the alveolar ridge shape on the stress distribution of a free-end saddle RPD partially supported by implant using 2-dimensioanl finite element analysis (FEA). Four mathematical models (M) of a mandibular hemiarch simulating various alveolar ridge shapes (1-distal desceding, 2- concave, 3-horizontal and 4-distal ascending) were built. Tooth 33 was placed as the abutment. Two RPDs, one supported by tooth and fibromucosa (MB) and other one supported by tooth and implant (MC) were simulated. MA was the control (no RPD). The load (50N) were applied simultaneously on each cusp. Appropriate boundary conditions were assigned on the border of alveolar bone. Ansys 10.0 software was used to calculate the stress fields and the von Mises equivalent stress criteria (σvM) was applied to analyze the results. The distal ascending shape showed the highest σvM for cortical and medullar bone. The alveolar ridge shape had little effect on changing the σvM based on the same prosthesis, mainly around the abutment tooth.
Resumo:
Background Dentoalveolar trauma, especially when involving front teeth, negatively affect the patient’s life; in particular, tooth avulsion is a complex injury that affects multiple tissues, and no treatment option offers stable long-term outcomes. The aim of this study was to report a case of reconstruction of atrophic anterior alveolar ridge after tooth loss, performed with autograft harvested from the chin, and subsequent prosthetic rehabilitation with the use of an osseointegrated implant. Case report A 23-years-old Caucasian girl, presented an atrophic alveolar bone in the area of tooth 11, as a result of tooth resorption 10 years after a tooth reimplantation procedure. Reconstruction was performed with autogenous bone harvested from the chin. After 6-months healing period to allow autograft incorporation, a dental implant was inserted. After further 6- months, a screw-retained implant supported metal-ceramic prosthesis was fabricated. Results The prosthetic rehabilitation was successful, and after a follow-up period of 5 years, the achieved result was stable.Conclusion It can be concluded that the autogenous bone graft harvested from the chin, is a safe and effective option for alveolar ridge defects reconstruction, allowing a subsequent placement of a dental implant supporting a prosthetic restoration.
Resumo:
Dentoalveolar traumatisms, particularly those that affect the anterior teeth, interfere adversely in the patient s life.Among them, tooth avulsion is pointed out because it is characterized as a complex injury that affects multiple tissues, andbecause there is no effective treatment available for its resolution with a stable long-term outcome.Aim/Hypothesis: The aim of the present study was to relate a clinical case of complete reconstruction of atrophy of the alveolarbone corresponding to tooth 11, lost by tooth resorption 10 years after the tooth reimplantation procedure.Material and methods: Reconstruction was performed with autogenous bone harvested from the mentum donor site. Surgicalaccess began in the receptor area with a Newman mucoperiosteal incision using a scalpel blade 15 mounted in a scalpel handlefor detachment and exposure of the receptor site. Extensive bone resorption was observed in the vestibular-palatine direction,proved by the thinness of the receptor bed. Decorticalization of the vestibular bone plate was performed. After preparing thereceptor bed, and incision was made in the mucosa in the depth of the anterior vestibular fornix, then a perpendicular muscleperiostealincision to detach and exposure the donor area. The bone graft necessary for reconstruction of the donor area wasdelimited, followed by monocortical osteotomy and the monocortical graft was removed. The next stage was to perform shapingfor passive graft accommodation and fixation by means of two bicortical screws. After fixation of the graft the sharp angles wererounded off in order to avoid possible exposure and/or fenestrations of the reconstructed area, then the receptor and donor areawere sutured. After the 6-month period to allow incorporation of the autogenous graft, an osseointegrated dental implant wasinserted. At the end of the 6-month period of waiting for osseointegration to occur, the process of fabricating the screw-retainedmetal ceramic