294 resultados para Photoluminescence spectra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared-to-visible frequency upconversion was investigated in Er 3+-doped Ga10Ge25S65 glass and in the transparent glass-ceramic obtained by heat-treatment of the glass above its glass-transition temperature. Continuous-wave and pulsed lasers operating at 980 nm and 1480 nm were used as excitation sources. The green (2H 11/2 → 4I15/2; 4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) photoluminescence (PL) signals due to the Er3+ ions were characterized. The PL decay times were influenced by energy transfer among Er3+ ions, by cross-relaxation processes and by energy transfer from the Er3+ ions to the host material. The PL from the Er3+ ions hosted in the crystalline phase was distinguished only when the glass-ceramic was excited by the 1480 nm pulsed laser. The excitation pathways responsible for the green and red PL bands are discussed to explain the differences between the spectra observed under continuous-wave and pulsed excitation. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new europium binuclear complex [Eu2(dcpz) 2(suc)(H2O)8]·(H2O) 1.5 (dcpz = 3,5-dicarboxypyrazolate and suc = succinate) has been synthesized and structurally characterized by single crystal X-ray diffraction methods. The binuclear complex crystallizes in the triclinic space group P1̄ and consists of two lanthanide ions linked by two different bridging organic ligands. 3D supramolecular framework is constructed by hydrogen bonds. The compound shows strong red emission under UV excitation at room temperature associated to IL transitions indicating a ligand to metal energy transfer mechanism since the triplet energy level lies higher than that of europium 5D0 level. Magnetic susceptibility studies showed weak temperature dependence characteristic of the Van Vleck paramagnetism. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and photoluminescence properties at room temperature of CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method (MAH) under different soaking times on KOH mineralizer added to a cerium ammonium nitrate aqueous solution were undertaken. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements were employed. XRD revealed that the nanoparticles are free of secondary phases and crystallize in the cubic structure. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. The most intense PL emission was obtained for nanoparticles which represent a lower particle size. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) was synthesized at the ratio of Zr/Ti=52/48 using two synthesis methods: the polymeric precursor method (PPM) and the microwave-assisted hydrothermal method (MAHM). The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution by sedimentation, hysteresis measurements and photoluminescence (PL). The results showed that PZT powders are composed of tetragonal and rhombohedral phases. Different particle sizes and morphologies were obtained depending upon the synthesis method. From the hysteresis loop verified that PZT powders synthesized by the PPM have a typical loop of ferroelectric material and are more influenced by spatial charges while particles synthesized by the MAHM have a hysteresis loop similar to paraelectric material and are less influenced by spatial charges. Both samples showed PL behavior in the green region (525 nm) whereas the sample synthesized by the PPM showed higher intensity in spectra. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes involving visible to infrared energy conversion are presented for Pr3+-Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr 3+:3P0 → 3H4 (482 nm), Pr3+:1D2 → 3H6 (800 nm), Yb3+:2F5/2 → 2F 7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+-Yb 3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+: 3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) resulting in one photon emitted by Pr3+ (1G4 → 3H5) and one photon emitted by Yb3+ (2F7/2 → 2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) followed by a second energy transfer step (Pr 3+:1G4 → 3H4; Yb3+:2F7/2 → 2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+: 1D2 → 3F4; Yb 3+:2F7/2 → 2F5/2). © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the structural refinement, morphology and optical properties of barium strontium molybdate [(Ba1-x Sr x )MoO4 with x = 0, 0.25, 0.50, 0.75 and 1] crystals, synthesized by the co-precipitation (drop-by-drop) method, are reported. The crystals obtained were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform-Raman (FT-Raman) and Fourier transform-infrared (FT-IR) spectroscopies. The shapes of the crystals were observed by means of field-emission scanning electron microscopy (FE-SEM). The optical properties were investigated using ultraviolet-visible (UV-Vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement, and FT-Raman and FT-IR spectra showed that all of the crystals are monophasic with a scheelite-type tetragonal structure. The refined lattice parameters and atomic positions were employed to model the [BaO8], [SrO8] and [MoO4] clusters in the tetragonal lattices. The FE-SEM images indicate that increased x content produces a decrease in the crystal size and modifications in the crystal shape. UV-Vis spectra indicated a decrease in the optical band gap with an increase in x in the (Ba1-x Sr x )MoO4 crystals. Finally, a decrease in the intensity of PL emission is apparent with an increase in x up to 0.75 in the (Ba1-x Sr x )MoO4 crystal lattice when excited by a wavelength of 350nm, probably associated with the degree of structural order-disorder. © 2013 International Union of Crystallography Printed in Singapore - all rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and photoluminescent properties at room temperature of CeO2 nanoparticles synthesized by a Microwave-Assisted Hydrothermal Method (MAH) under different praseodymium contents was undertaken. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), UV-vis Spectroscopy (UV-vis), Fourier Transform Raman (FT-Raman) and Photoluminescence (PL) measurements were employed. XRD revealed that the nanoparticles are free of secondary phases and crystallize in the cubic structure while FT-Raman revealed a typical scattering mode of fluorite type. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. The most intense PL emission was obtained for nanoparticles which represent a lower particle size. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCTO thin films were deposited on Pt(1 1 1)/Ti/SiO2/Si substrates using a chemical (polymeric precursor) and pressure method. Pressure effects on CCTO thin films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and optical properties which revealed that a pressure film (PF) is denser and more homogeneous than a chemical film (CF). Pressure also causes a decrease in the band gap and an increase in the photoluminescence (PL) emission of CCTO films which suggests that the pressure facilitates the displacement of Ti in the titanate clusters and the charge transference from TiO6 to [TiO5V0z], [TiO5V0z] to [CaO11V0z] and [TiO5V0z] to [CuO4]x. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymeric complex [Eu(α-tpc)3(α-Htpc) 2]n and its characterization by single crystal X-ray and thermal analysis, infrared and photoluminescence spectroscopies are described. The compound crystallizes in the monoclinic Cc space group. The asymmetric unit is formed from a europium ion bonded to one carboxyl oxygen of five different thiophene carboxylic moieties. Three of these moieties are deprotonated and bridge between neighboring europium ions giving rise to an infinite polymer along the c axis. Besides the europium characteristic emission lines, the emission spectra show unambiguously the crystal size effect on the 5D0 → 7F0 transition. The complex thermal decomposition at 220 C leads to a stable luminescent complex in which the 5D0 → 7F4 transition reveals a monomeric characteristic. The Judd-Ofelt intensity parameters to the polymeric and the monomeric compound with the same ligand and coordination number were compared. © 2013 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)