225 resultados para ring chromosome and SNP-array
Resumo:
Some species of the genus Characidium have heteromorphic ZZ/ZW sex chromosomes with a totally heterochromatic W chromosome. Methods for chromosome microdissection associated with chromosome painting have become important tools for cytogenetic studies in Neotropical fish. In Characidium cf. fasciatum, the Z chromosome contains a pericentromeric heterochromatin block, whereas the W chromosome is completely heterochromatic. Therefore, a probe was produced from the W chromosome through microdissection and degenerate oligonucleotide-primed polymerase chain reaction amplification. FISH was performed using the W probe on the chromosomes of specimens of this species. This revealed expressive marks in the pericentromeric region of the Z chromosome as well as a completely painted W chromosome. When applying the same probe on chromosome preparations of C. cf. gomesi and Characidium sp., a pattern similar to C. cf. fasciatum was found, while C. cf. zebra, C. cf. lagosantense and Crenuchus spilurus species showed no hybridization signals. Structural changes in the chromosomes of an ancestral sexual system in the group that includes the species C. cf. gomesi, C. cf. fasciatum and Characidium sp., could have contributed to the process of speciation and could represent a causal mechanism of chromosomal diversification in this group. The heterochromatinization process possibly began in homomorphic and homologous chromosomes of an ancestral form, and this process could have given rise to the current patterns found in the species with sex chromosome heteromorphism. © 2013 Springer Science+Business Media Dordrecht.
Association of IGF1 and KDM5A polymorphisms with performance, fatness and carcass traits in chickens
Resumo:
Two functional and positional candidate genes were selected in a region of chicken chromosome 1 (GGA1), based on their biological roles, and also where several quantitative trait loci (QTL) have been mapped and associated with performance, fatness and carcass traits in chickens. The insulin-like growth factor 1 (IGF1) gene has been associated with several physiological functions related to growth. The lysine (K)-specific demethylase 5A (KDM5A) gene participates in the epigenetic regulation of genes involved with the cell cycle. Our objective was to find associations of selected single-nucleotide polymorphisms (SNPs) in these genes with performance, fatness and carcass traits in 165 F2 chickens from a resource population. In the IGF1 gene, 17 SNPs were detected, and in the KDM5A gene, nine SNPs were detected. IGF1 SNP c. 47673G > A was associated with body weight and haematocrit percentage, and also with feed intake and percentages of abdominal fat and gizzard genotype × sex interactions. KDM5A SNP c. 34208C > T genotype × sex interaction affected body weight, feed intake, percentages of abdominal fat (p = 0. 0001), carcass, gizzard and haematocrit. A strong association of the diplotype × sex interaction (p < 0. 0001) with abdominal fat was observed, and also associations with body weight, feed intake, percentages of carcass, drums and thighs, gizzard and haematocrit. Our findings suggest that the KDM5A gene might play an important role in the abdominal fat deposition in chickens. The IGF1 and KDM5A genes are strong candidates to explain the QTL mapped in this region of GGA1. © 2012 Institute of Plant Genetics, Polish Academy of Sciences, Poznan.
Resumo:
In this study, we investigated the mitotic and meiotic chromosomes of 11 Buthidae scorpion species, belonging to three genera (Ananteris, Rhopalurus and Tityus), to obtain detailed knowledge regarding the mechanisms underlying the intraspecific and/or interspecific diversity of chromosome number and the origin of the complex chromosome associations observed during meiosis. The chromosomes of all species did not exhibit a localised centromere region and presented synaptic and achiasmatic behaviour during meiosis I. Spermatogonial and/or oogonial metaphase cells of these buthids showed diploid numbers range from 2n = 6 to 2n = 28. In most species, multivalent chromosome associations were observed in pachytene and postpachytene nuclei. Moreover, intraspecific variability associated with the presence or absence of chromosome chains and the number of chromosomes in the complex meiotic configurations was observed in some species of these three genera. Silver-impregnated cells revealed that the number and location of nucleolar organiser regions (NORs) remained unchanged despite extensive chromosome variation; notably, two NORs located on the terminal or subterminal chromosome regions were commonly observed for all species. C-banded and fluorochrome-stained cells showed that species with conspicuous blocks of heterochromatin exhibited the lowest rate of chromosomal rearrangement. Based on the investigation of mitotic and meiotic cells, we determined that the intraspecific variability occurred as a consequence of fission/fusion-type chromosomal rearrangements in Ananteris and Tityus species and reciprocal translocation in Rhopalurus species. Furthermore, we verified that individuals presenting the same diploid number differ in structural chromosome organisation, giving rise to intraspecific differences of chromosome association in meiotic cells (bivalent-like elements or chromosome chains). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) [1] to be typed using SNaPShotTM (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) [1] was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010) [1]. All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. © 2013 Elsevier B.V.
Resumo:
Background: Birth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs).Results: The most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length.Conclusions: This study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus). © 2013 Utsunomiya et al.; licensee BioMed Central Ltd.
Genomic Signatures Predict Poor Outcome in Undifferentiated Pleomorphic Sarcomas and Leiomyosarcomas
Resumo:
Undifferentiated high-grade pleomorphic sarcomas (UPSs) display aggressive clinical behavior and frequently develop local recurrence and distant metastasis. Because these sarcomas often share similar morphological patterns with other tumors, particularly leiomyosarcomas (LMSs), classification by exclusion is frequently used. In this study, array-based comparative genomic hybridization (array CGH) was used to analyze 20 UPS and 17 LMS samples from untreated patients. The LMS samples presented a lower frequency of genomic alterations compared with the UPS samples. The most frequently altered UPS regions involved gains at 20q13.33 and 7q22.1 and losses at 3p26.3. Gains at 8q24.3 and 19q13.12 and losses at 9p21.3 were frequently detected in the LMS samples. Of these regions, gains at 1q21.3, 11q12.2-q12.3, 16p11.2, and 19q13.12 were significantly associated with reduced overall survival times in LMS patients. A multivariate analysis revealed that gains at 1q21.3 were an independent prognostic marker of shorter survival times in LMS patients (HR = 13.76; P = 0.019). Although the copy number profiles of the UPS and LMS samples could not be distinguished using unsupervised hierarchical clustering analysis, one of the three clusters presented cases associated with poor prognostic outcome (P = 0.022). A relative copy number analysis for the ARNT, SLC27A3, and PBXIP1 genes was performed using quantitative real-time PCR in 11 LMS and 16 UPS samples. Gains at 1q21-q22 were observed in both tumor types, particularly in the UPS samples. These findings provide strong evidence for the existence of a genomic signature to predict poor outcome in a subset of UPS and LMS patients. © 2013 Silveira et al.
Resumo:
PURPOSE: To investigate and compare the biocompatibility of two types of Ferrara intracorneal ring segment: with and without chondroitin sulfate coating by clinical and histopathological evaluation. METHODS: A randomized experimental study was carried out on thirty right-eye corneas from 30 Norfolk albino rabbits allocated into two experimental groups: Group G1 - implanted with Ferrara intracorneal ring segment without coating (FICRS) and Group G2 - implanted with Ferrara intracorneal ring segment with chondroitin sulfate coating (FICRS-CS). Left eyes formed the control group. Clinical parameters analyzed were: presence of edema, vascularization, infection and ring extrusion one, 30, and 60 days after surgery. Histopathological parameters analyzed were: number of corneal epithelial layers over and adjacent to the ring, presence of spongiosis, hydropic degeneration, basement membrane thinning, inflammatory cells, neovascularization and pseudocapsule formation. RESULTS: At clinical examination 60 days after implant, edema, vascularization and extrusion were observed respectively in 20%, 26.7%, 6.7% of FICRS corneas and in 6.7%, 6.7%, and 0% of FICRS-CS corneas. Histopathological evaluation showed epithelial-layer reduction from 5 (5;6) to 3 (3;3) with FICRS and from 5 (5;5) to 4 (3;5) with FICRS-CS in the region over the ring. Epithelial spongiosis, hydropic degeneration, and basement membrane thinning were present in 69.2%, 53.8%, and 69.2% of FICRS and in 73.3%, 73.3%, and 46.7% with FICRS-CS, respectively. Vascularization was present in 38.5% of FICRS and 13.3% with FICRS-CS, inflammatory cells in 75% of FICRS and 33.3% with FICRS-CS, and pseudocapsule in 66.7% of FICRS and 93.3% with FICRS-CS. Giant cells occurred only in the FICRS-CS group (20%). CONCLUSION: Ferrara intracorneal rings coated with chondroitin sulfate (FICRS-CS) caused lower frequency of clinical and histopathological alterations than Ferrara intracorneal rings without the coating (FICRS), demonstrating higher biocompatibility of the FICRS-CS.
Resumo:
The publication of the human genome sequence in 2001 was a major step forward in knowledge necessary to understand the variations between individuals. For farmed species, genomic sequence information will facilitate the selection of animals optimised to live, and be productive, in particular environments. The availability of cattle genome sequence has allowed the breeding industry to take the first steps towards predicting phenotypes from genotypes by estimating a genomic breeding value (gEBV) for bulls using genome-wide DNA markers. The sequencing of the buffalo genome and creation of a panel of DNA markers has created the opportunity to apply molecular selection approaches for this species.The genomes of several buffalo of different breeds were sequenced and aligned with the bovine genome, which facilitated the identification of millions of sequence variants in the buffalo genomes. Based on frequencies of variants within and among buffalo breeds, and their distribution across the genome compared with the bovine genome, 90,000 putative single nucleotide polymorphisms (SNP) were selected to create an Axiom (R) Buffalo Genotyping Array 90K. This SNP Chip was tested in buffalo populations from Italy and Brazil and found to have at least 75% high quality and polymorphic markers in these populations. The 90K SNP chip was then used to investigate the structure of buffalo populations, and to localise the variations having a major effect on milk production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Unlike the X chromosome, the mammalian Y chromosome undergoes evolutionary decay resulting in small size. This sex chromosomal heteromorphism, observed in most species of the fossorial rodent Ctenomys, contrasts with the medium-sized, homomorphic acrocentric sex chromosomes of closely related C. maulinus and C. sp. To characterize the sequence composition of these chromosomes, fluorescent banding, self-genomic in situ hybridization, and fluorescent in situ hybridization with an X painting probe were performed on mitotic and meiotic plates. High molecular homology between the sex chromosomes was detected on mitotic material as well as on meiotic plates immunodetected with anti-SYCP3 and anti-gamma H2AX. The Y chromosome is euchromatic, poor in repetitive sequences and differs from the X by the loss of a block of pericentromeric chromatin. Inferred from the G-banding pattern, an inversion and the concomitant prevention of recombination in a large asynaptic region seems to be crucial for meiotic X chromosome inactivation. These peculiar findings together with the homomorphism of Ctenomys sex chromosomes are discussed in the light of the regular purge that counteracts Muller's ratchet and the probable mechanisms accounting for their origin and molecular homology. (C) 2014 S. Karger AG, Basel