403 resultados para Peixe neotropical
Resumo:
Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes. © 2012 Springer Science+Business Media B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The new-generation 454 GS-FLX Titanium pyrosequencing was used to isolate microsatellite markers for the Brazilian Guanabara frog, Euparkerella brasiliensis, an Atlantic forest endemic species. Three multiplex polymerase chain reaction sets were optimized for genotyping of 11 polymorphic (di- and tetranucleotide) microsatellite markers. Genetic diversity was assessed in 21 individuals from a population (Reserva Ecológica de Guapiaçu, REGUA) locatedin the central region of the Rio de Janeiro State, in Brazil. The mean number of alleles per locus ranged from 3 to 12. Observed and expected heterozygosities ranged from 0.095 to 0.905 and from 0.094 to 0.904, respectively. After using the Bonferroni correction for multiple tests, there was no evidence of linkage disequilibrium between pairs of loci but deviations for Hardy-Weinberg equilibrium were found in 4 loci. We found no evidence for allele dropouts or stuttering, but we detected the presence of null alleles at loci Eb10 and Eb36. These markers will be useful for analyses of fine-scale population structure and determination of relative effects of habitat loss and fragmentation on population genetic variability within species. © FUNPEC-RP.
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Resumo:
Background: Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings: We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance: Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. © 2013 Bueno et al.
Resumo:
Two new species of Diaptomidae were found in the Middle Paraná River. The new species are referred to as Diaptomus curvatus sp. nov. and Diaptomus frutosae sp. nov. Important character states in Diaptomus curvatus include: right fifth leg with a well-developed endopod and with the lateral spine of the second exopod segment curved and longer than the segment on which it is inserted, plus the presence of a large dorsal process on urosomite 4 of the male. For Diaptomus frutosae they include: a differentiated hook-like process on segment 20 with chitinous protuberances at base of male right antennule; the last segment of the right leg 5 of male is triangular, and the lateral spine inserted distal to mid-level of this segment. Both species are placed in Diaptomus sensu lato as a temporary placement. http://www.zoobank.org/urn:lsid:zoobank.org:pub:FECDD6C4-C0AC-4043-ADDD-F29539B451F0. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Background: The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region.Results: Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species.Conclusions: Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify species, even with low interspecific divergence, gives us an idea of the distribution of inter-specific genetic divergence in these megadiverse fauna. The results also revealed hidden genetic divergences suggestive of reproductive isolation and putative cryptic speciation in some species (23 candidates for new species). Finally, our study constituted an important contribution to the international Barcoding of Life (iBOL.org) project, providing barcode sequences for use in identification of these species by experts and non-experts, and allowing them to be available for use in other applications. © 2013 Pereira et al.; licensee BioMed Central Ltd.
Resumo:
Chiroptera, the second largest mammalian order, presents different reproductive strategies and unique reproductive features. However, there are few reports regarding male reproductive accessory glands (RAGs) in Chiroptera. Thus, the aim of the present study was to characterise the RAGs of the exclusively neotropical bat Artibeus planirostris (Chiroptera: Phyllostomidae) macroscopically, microscopically and ultrastructurally. The RAGs were composed of a prostatic complex with two regions (ventral and dorsal) and paraurethral and bulbourethral glands, but no seminal vesicles. The ventral region had an undefined epithelium, with secretory and basal cells, and its secretions were periodic acid-Schiff (PAS) positive. The dorsal region received both deferens ducts, had a columnar pseudostratified epithelium with secretory and basal cells. There were two types of secretions from the dorsal region: one that was basophilic and another that was mixed PAS positive and PAS negative. The paraurethral glands were dispersed in the connective tissue of the urethra, whereas the bulbourethral glands were located in the penile root. Histological and ultrastructural data confirmed the prostatic nature of the ventral and dorsal regions and the holocrine nature of the ventral region, with the latter finding never having been described previously for the prostate gland. Our findings demonstrate the wide discrepancy of RAGs between A. planirostris and other mammals in terms of their composition, structure and morphology. © CSIRO 2013.
Resumo:
The evolution of arboreality in snakes is accompanied by modifications that are remarkably similar across species. Gravity is one of the most important selective agents, and arboreal snakes present adaptations to circumvent the gradient of pressure, including modifications on heart position (HP) and body slenderness (BS). However, the degree to which different life-history traits influence the cardiovascular system of snakes remains unclear. Here, we used an ecological and a phylogenetic approach to explore the relationship between habitat, HP, BS, and heart size (HS) in five species of the neotropical whipsnakes genus Chironius that occupy terrestrial, semiarboreal, and arboreal habits. Our ecological comparison indicated that the arboreal species have the most posterior-positioned heart, the most slender body, and the smallest HS, whereas the terrestrial representative of the group exhibited the most anterior heart, the less flattened body, and the largest HS. After removing the phylogenetic effect, we found no difference in HP and BS between terrestrial and arboreal species. Habitat only differed when contrasting with HS. Body slenderness and HS were correlated with HP. Our results suggest that different restrictions, such as anatomical constraints, behavior, and phylogenetic inertia, may be important for the studied species. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
•Relationships of Cheirodontinae based on a broad taxonomic sample.•Results reject the monophyly of Cheirodontinae as previously conceived.•Exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae.•The removal of Leptagoniates pi of the genus Leptagoniates and inclusion in Cheirodontinae.•Division of Cheirodontinae in three newly defined monophyletic tribes. Characidae is the most species-rich family of freshwater fishes in the order Characiformes, with more than 1000 valid species that correspond to approximately 55% of the order. Few hypotheses about the composition and internal relationships within this family are available and most fail to reach an agreement. Among Characidae, Cheirodontinae is an emblematic group that includes 18 genera (1 fossil) and approximately 60 described species distributed throughout the Neotropical region. The taxonomic and systematic history of Cheirodontinae is complex, and only two hypotheses about the internal relationships in this subfamily have been reported to date. In the present study, we test the composition and relationships of fishes assigned to Cheirodontinae based on a broad taxonomic sample that also includes some characid incertae sedis taxa that were previously considered to be part of Cheirodontinae. We present phylogenetic analyses of a large molecular dataset of mitochondrial and nuclear DNA sequences. Our results reject the monophyly of Cheirodontinae as previously conceived, as well as the tribes Cheirodontini and Compsurini, and the genera Cheirodon, Compsura, Leptagoniates, Macropsobrycon, Odontostilbe, and Serrapinnus. On the basis of these results we propose: (1) the exclusion of Amazonspinther and Spintherobolus from the subfamily Cheirodontinae since they are the sister-group of all remaining Characidae; (2) the removal of Macropsobrycon xinguensis of the genus Macropsobrycon; (3) the removal of Leptagoniates pi of the genus Leptagoniates; (4) the inclusion of Leptagoniates pi in the subfamily Cheirodontinae; (5) the removal of Cheirodon stenodon of the genus Cheirodon and its inclusion in the subfamily Cheirodontinae under a new genus name; (6) the need to revise the polyphyletic genera Compsura, Odontostilbe, and Serrapinnus; and (7) the division of Cheirodontinae in three newly defined monophyletic tribes: Cheirodontini, Compsurini, and Pseudocheirodontini. Our results suggest that our knowledge about the largest Neotropical fish family, Characidae, still is incipient. © 2013 Elsevier Inc..
Resumo:
Phylogeographic studies provide an important framework for investigating the mechanisms operating during the earliest stages of speciation, as reproductive barriers can be examined among divergent lineages in a geographic context. We investigated the evolution of early stages of intrinsic postmating isolation among different populations and lineages of Epidendrum denticulatum, a Neotropical orchid distributed across different biomes in South America. We estimated genetic diversity and structure for both nuclear and plastid markers, using a haplotype network, differentiation tests, Bayesian assignment analysis, and divergence time estimates of the main lineages. Reproductive barriers among divergent lineages were examined by analyzing seed viability following reciprocal crossing experiments. Strong plastid phylogeographic structure was found, indicating that E. denticulatum was restricted to multiple refuges during South American forest expansion events. In contrast, significant phylogeographic structure was not found for nuclear markers, suggesting higher gene flow by pollen than by seeds. Large asymmetries in seed set were observed among different plastid genetic groups, suggesting the presence of polymorphic genic incompatibilities associated with cytonuclear interactions. Our results confirm the importance of phylogeographic studies associated with reproductive isolation experiments and suggest an important role for outbreeding depression during the early stages of lineage diversification. © 2013 The Society for the Study of Evolution.
Resumo:
Background: Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes. Results: Physical mapping revealed abundant TE clusters dispersed throughout the chromosomes. Furthermore, several species showed conspicuous clusters accumulation in the centromeric and terminal portions of the chromosomes. These TE chromosomal sites are associated with both heterochromatic and euchromatic regions. A higher number of Rex1 clusters were observed among the derived species. The Rex1 and Rex3 nucleotide sequences were more conserved in the basal species than in the derived species; however, this pattern was not observed in Rex6. In addition, it was possible to observe conserved blocks corresponding to the reverse transcriptase fragment of the Rex1 and Rex3 clones and to the endonuclease of Rex6. Conclusion: Our data showed no congruence between the Bayesian trees generated for Rex1, Rex3 and Rex6 of cichlid species and phylogenetic hypothesis described for the group. Rex1 and Rex3 nucleotide sequences were more conserved in the basal species whereas Rex6 exhibited high substitution rates in both basal and derived species. The distribution of Rex elements in cichlid genomes suggests that such elements are under the action of evolutionary mechanisms that lead to their accumulation in particular chromosome regions, mostly in heterochromatins. © 2013 Schneider et al.; licensee BioMed Central Ltd.
Resumo:
Background: This study aimed to establish reference values for selected ophthalmic diagnostic tests in healthy neotropical primates from Salvador, Brazil. Methods: A total of 73 intact adults, including Callithrix jacchus (n = 31), Callithrix penicillata (n = 8), Cebus sp. (n = 22), and Cebus xanthosternos (n = 9) were used to evaluate the normal conjunctival bacterial flora. Cebus xanthosternos (n = 12) were used to evaluate tear production with Schirmer's tear test (STT), intraocular pressure (IOP), and conjunctival cytology. Results: For all animals evaluated, Gram-positive bacteria were predominant. Results of the diagnostic tests in Cebus xanthosternos were as follows: STT: 14.92 ± 5.46 mm/minutes, IOP: 19.62 ± 4.57 mmHg, and conjunctival cytology revealed intermediate squamous epithelial cells in great quantities. Conclusions: These ophthalmic reference values will be particularly useful to diagnose discrete or unusual pathological changes in the neotropical primates eye. © 2013 John Wiley & Sons A/S.
Resumo:
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vectorhuman and vectorparasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles- darlingi. © 2013 The Author(s).