387 resultados para Filmes evaporados a vácuo (PVD)
Resumo:
The DGT technique has been used to determine and better understand the dynamics and bioavailability of metals in the sea near to marine outfalls. In this work, the DGT was assessed for the determination of Cd, Pb, Cu, Zn and Ni in marine water samples from Potiguar Basin in its conventional aspect (binding agent, Chelex-100 and diffusive agent: Diffusive polyacrylamide gel (D) and restrictive (R)) and determination of Pb and Cd through its alternative aspect (binding agent: Saccharomyces cerevisiae immobilized in agarose gels and diffusive agent: 3MM Chromatography Paper). The deployment curves for long periods of immersion in the sample, showed a good linear correlation for the conventional aspect to Zn (D: R²=0.9586, R: R²=0.9444), Ni (D: R²=0.9789, R: R²=0.9286) and Cu (D: R²=0.764, R: R²=0.8143), and alternative to Pb (R²=0.9228) and Cd (R²=0.9673). The results of the organic and inorganic composition analysis in conventional aspect, showed that for every element there is no significant fraction of organic compounds in the sample. In addition, considering the alternative aspect, the comparison of obtained and expected masses suggests that some of the Pb is not labile and that the main retention mechanism of Pb for S. Cerevisiae occurs through ion exchange
Resumo:
O rápido crescimento do mercado de dispositivos eletrônicos portáteis, com aplicações em diferentes áreas (telecomunicações, medicina, engenharia), criou uma grande demanda por fontes de potência compactas leves e, sobretudo, de baixo custo. Essa demanda levou ao desenvolvimento de tecnologia de filmes finos nanoestruturados para a obtenção de componentes eletroeletrônicos, por exemplo, memórias de computador. Estes dispositivos são empregados em “notebooks”, circuitos integrados, telefones celulares. O estudo de cristalização de filmes finos ferroelétricos nanoestruturados será feito através da cristalização induzida por rotas convencionais tal como cristalização em forno mufla. A modulação entre os diferentes cátions (Pb, Ca e Ba) para formar o sistema Pb1-x(Ca,Ba)xTiO3 serão analisadas, visando obter filmes com propriedades compatíveis para uso em memórias ferroelétricas. Para isso, os filmes finos serão depositados em substratos adequados controlando-se a homogeneidade química, a microestrutura e a interação filme-substrato
Resumo:
Bi3NbO7 thin films were prepared by the polymeric precursor method. The precursor solutions were prepared with excess of bismuth ranging from 0% to 10% and the pH was controlled to be maintained between 8 and 9. This control was done by adding to the solution niobium and ethylene glycol. The final solution was clear and free of precipitation. After obtaining the precursor solution, has begun the process of characterization of powders with thermogravimetry (TG), differential thermal analysis and X-ray analysis (XRD). The films were obtained by the polymeric precursors, the method is advantageous because it is simple, and low cost involves steps and controlled stoichiometry. The films were annealed and characterized by XRD and SEM and also characterized according to their dialectics properties. We observed that the best results were obtained when the film is thermally at 800 ° C for two hours and 860 ° C for two hour. Under these conditions we obtain Bi3NbO7 thin films with good homogeneity, uniform distribution of the grains, but with the formation of secondary phase, which does not occur in treatments with lower temperature. The dielectric characterization showed that the produced film showed good characteristics with high dielectric constant and low loss
Resumo:
The Boron Neutron Capture Therapy (BNCT), based on the 10B(n,α)7Li reaction, represents a promising modality for the treatment of cancers that are resistents to conventional treatments. So, it is necessary to find drugs (boron compounds) with high selectivity for each type of cancer, the neutrons source should be well characterized and the rate of 10B(n,α)7Li reaction should be measured with great accuracy as possible. This study aimed to develop a method for manufacturing thin films of boron, for measure the 10B(n,α)7Li reaction, and analyze the uniformity of the films. Five thin films of boron were manufactured with three different concentrations of boric acid, heated to transform the acid in boron, irradiated with thermic neutrons coupled to CR-39 detectors, in BNCT line at the reactor IEA-R1 IPEN/CNEN, São Paulo. After the irradiation, the detectors were chemically attacked with NaOH to reveal the tracks. The methodology presented is effective because it resulted in deposition of boron as thin film enabling the quantitative analysis of 10B(n,α)7Li reaction. The analysis of the uniformity of density of the induced tracks in CR-39 shows that, in most of the films, there is no uniformity in surface distribution of boron, but when the film is divided, we obtain some uniform sectors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is known that there is a wide variety of bioavailable trace metals in aquatic systems, and its determination is fundamental to predict impacts to organisms in these environments. However, the determination of the total concentration of chemicals in aquatic systems, despite its importance, does not provide necessary information for decision making or even may lead to misinterpretation of the procedures and potential risks to the system in question. This study aimed to use the technique of diffusion in thin films by concentration gradients (DGT) to evaluate the anion exchange membrane Whatman DE 81 as binder alternative in determining Cr (VI). Experiments were carried out to determine the diffusion coefficients for the material used diffusion (agarose gel). The behaviors of the binders were analyzed before the main variables of the systems, immersion time, pH and ionic strength. Then was made the assessment of potential interferences, to finally proceed with testing using actual samples in the laboratory and in situ
Resumo:
Technology always advances and thus the device miniaturization and improved performance, besides multifunctionality, they become extremely necessary. A wave of research on the area tends to grow in number and importance in today's market, it is necessary to search for new materials, new applicability of the existing ones and new processes for increasingly cheaper costs. Dielectric materials are considered a key element in this sector being the main electrical properties its high dielectric constant and low dielectric loss. The Polymeric Precursor Method appears as a good alternative because is a low cost, simple process with controlled stoichiometry. In this method, two steps were performed. In a first step, the precursor solution was decomposed into powders and in a second step the precursor solution was converted in thin films. In this work, was used the polymeric precursor methods to get thin films where they were heat treated and characterized by XRD, SEM and AFM. We have obtained Bi3NbO7 thin films with good homogeneity and uniform distribution of grains were noted. We observed that the best condition to obtain the tetragonal phase is annealing the film at high temperatures for a longer soaking time and with excess of bismuth. Several oxides electrodes were evaluated aiming to obtain textured dielectric thin films
Resumo:
Worldwide environmental degradation is an undesirable byproduct resulting from the increasing demand for natural resources. Water sources are suffering intense contamination since they usually receive a huge amount of domestic and industrial effluents - which are mostly wasted without proper treatment - inserting a large number of pollutants in the environment, heavy metals included. Mercury holds great toxicological importance because, under some physicochemical conditions in a water environment, Hg (II) ion turns into methylated compounds stemming from this element, such as methylmercury CH3Hg, which is highly toxic for the aquatic community in which bioaccumulation occurs. Nowadays passive sampling techniques are being developed to enable the analytical procedures which are applied in environmental monitoring. Diffusive gradients in thin-films technique (DGT) has been proven an interesting tool for the determination of labile metal species due to its in situ application. The DGT technique consists of a piston-like device on which the following series of agents is disposed: a binding agent (conventionally Chelex 100 resin), a diffusive agent, usually a polyacrylamide gel, and a membrane filter. Nevertheless, the agents conventinally used for this technique don't usually show satisfactory results in mercury sampling. The main goal of this study was to evaluate the phosphate-treated cellulose membrane (Whatman P 81), an alternative material, as binding agent in the DGT to determine labile mercury fractions in aquatic systems. In this context, we conducted a study of the behavior of this material in relation with system variables, pH and ionic strength. Afterwards we performed immersions of the DGT devices in real and enriched samples and in situ aiming the determination of mercury
Análise dos parâmetros técnicos e econômicos do aquecedor solar a vácuo, visando economia de energia
Resumo:
This work is about a development of a vacuum solar water heater. To accomplish this, some measurements were made, such as flow, water temperature and room temperature, relative humidity, solar power density and wind speed. It first presents a brief explanation about the global situation in relation to the accelerated use of exhaustible energy sources which can result in a breakdown of these for future generations. From this, is proposed to analyze this solar water heater with vacuum tubes during the winter season in Brazil southeastern region, under different environmental conditions. From such ideas became possible to prove through the experimental part, calculations and graphical results that technology and the performance of this device are technical and economically viable, according to the life cycle of this. It was also found that the average monthly production in a maximum heat stroke situation was 193,33kWh and minimum isolation was 57,76kWh. This reveals that this instrument should start to be examined more closely by all, as a way to reduce the use of electricity, which will protect the environment without reducing the comfort of people
Resumo:
The increasing demand for electro-electronic devices, with high performance and multi-functional and the rapid advances of the nanotechnology require the development of new methods and techniques for the production and characterization of nanostructure materials and phenomenological models to describe/to predict some of its properties. The demand for multifunctionality requires, at least, new materials, that can integrate ferroelectric and magnetic properties of high technological interest. Inside of this context, multiferroics material can be considered suitable to integrate two or more physical properties of high technological interest. It can also provides new challenges in the processes of synthesis of new materials, and development of new devices with controlling and simulation of its physical properties and modeling. For this Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements.In order to study the behavior and determine which are the most important parameters to achieve the optimal property to be applied to a multiferroic materials
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
O cólon tem sido explorado nas últimas décadas como sítio de liberação de fármacos. A goma gelana e a pectina são polissacarídeos hidrofílicos naturais promissores para a obtenção de sistemas de liberação cólon-específica de fármacos, uma vez que são degradados especificamente por enzimas produzidas pela microbiota deste órgão. Filmes poliméricos apresentam grande aplicação no revestimento de formas farmacêuticas sólidas e podem permitir o controle das taxas de liberação de fármacos e/ou seu direcionamento para um órgão específico. Além disso, modificações químicas como a reticulação iônica podem alterar propriedades físico-químicas como reduzir a hidrofilia do sistema. Neste trabalho foram obtidos e caracterizados filmes de goma gelana e pectina reticuladas ionicamente com cátion trivalente (Al3+). Os efeitos da concentração de polímeros, agente reticulante e plastificante (glicerol) utilizados na preparação das amostras foram avaliados a partir da caracterização das propriedades mecânicas, físicas e químicas dos filmes. A análise macroscópica revelou filmes flexíveis, homogêneos e translúcidos e a análise por microscopia eletrônica de varredura mostrou que a reticulação contribuiu para a formação de filmes com superfícies rugosas. Os baixos valores de transmissão de vapor d'água obtidos indicam a possibilidade de uma importante proteção contra a umidade. A absorção de líquido pH-dependente dos filmes foi demonstrada e a menor absorção de líquido em meio ácido deve garantir uma proteção da forma farmacêutica, quando em contato com o meio gástrico. Os filmes se mostraram bastante mucoadesivos, o que deve favorecer a retenção da forma farmacêutica no sítio alvo e as características mecânicas se mostraram favoráveis para a elaboração de filmes para revestimento de formas farmacêuticas sólidas
Resumo:
Pós-graduação em Química - IQ