543 resultados para tensile bond strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesive restorations have increasingly been used in dentistry, and the adhesive system application technique may determine the success of the restorative procedure. The aim of this study was to evaluate the influence of the application technique of two adhesive systems (Clearfil SE Bond and Adper Scotchbond MultiPurpose) on the bond strength and adhesive layer of composite resin restorations. Eight human third molars were selected and prepared with Class I occlusal cavities. The teeth were restored with composite using various application techniques for both adhesives, according to the following groups (n = 10): group 1 (control), systems were applied and adhesive was immediately light activated for 20 seconds without removing excesses; group 2, excess adhesive was removed with a gentle jet of air for 5 seconds; group 3, excess was removed with a dry microbrush-type device; and group 4, a gentle jet of air was applied after the microbrush and then light activation was performed. After this, the teeth were submitted to microtensile testing. For the two systems tested, no statistical differences were observed between groups 1 and 2. Groups 3 and 4 presented higher bond strength values compared with the other studied groups, allowing the conclusion that excess adhesive removal with a dry micro-brush could improve bond strength in composite restorations. Predominance of adhesive fracture and thicker adhesive layer were observed via scanning electron microscopy (SEM) in groups 1 and 2. For groups 3 and 4, a mixed failure pattern and thinner adhesive layer were verified. Clinicians should be aware that excess adhesive may negatively affect bond strength, whereas a thin, uniform adhesive layer appears to be favorable. (Quintessence Int 2013;44:9-15)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the current study was to evaluate the presence of debris and smear layer after endodontic irrigation with different formulations of 2% chlorhexidine gluconate (CHX) and its effects on the push-out bond strength of an epoxy-based sealer on the radicular dentin. One hundred extracted human canines were prepared to F5 instrument and irrigated with 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid. Fifty teeth were divided into five groups (n=10), according to the final irrigation protocol with different 2% CHX formulations: G1 (control, no final rinse irrigation), G2 (CHX solution), G3 (CHX gel), G4 (Concepsis), and G5 (CHX Plus). In sequence, the specimens were submitted to scanning electron microscopy (SEM) analysis, in the cervical-medium and medium-apical segments, to evaluate the presence of debris and smear layer. The other 50 teeth were treated equally to a SEM study, but with the root canals filled with an epoxy-based endodontic sealer and submitted to a push-out bond strength test, in the cervical, middle, and apical thirds. G2, G3, G4, and G5 provided higher precipitation of the debris and smear layer than G1 (P<0.05), but these groups were similar to each other (P>0.05), in both segments. The values obtained in the push out test did not differ between groups, independent of the radicular third (P>0.05). The CHXs formulations caused precipitation of the debris and smear layer on the radicular dentin, but these residues did not interfere in the push-out bond strength of the epoxy-based sealer. Microsc. Res. Tech. 77:17-22, 2014. (c) 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the microtensile bond strength (MTBS) of ceramic cemented to dentin varying the resin cement and ceramic shades.Materials and Methods: Two VITA VM7 ceramic shades (Base Dentine 0M1 and Base Dentine 5M3) were used. A spectrophotometer was used to determine the percentage translucency of ceramic (thickness: 2.5 mm). For the MTBS test, 80 molar dentin surfaces were etched and an adhesive was applied. Forty blocks (7.2 x 7.2 x 2.5 mm) of each ceramic shade were produced and the ceramic surface was etched (10% hydrofluoric acid) for 60 s, followed by the application of silane and resin cement (A3 yellow and transparent). The blocks were cemented to dentin using either A3 or transparent cement. Specimens were photoactivated for 20 s or 40 s, stored in distilled water (37 degrees C/24 h), and sectioned. Eight experimental groups were obtained (n = 10). Specimens were tested for MTSB using a universal testing machine. Data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha <= 0.05).Results: The percentage translucency of 0M1 and 5M3 ceramics were 10.06 (+/- 0.25)% and 1.34 (+/- 0.02)%, respectively. The lowest MTBS was observed for the ceramic shade 5M3. For the 0M1 ceramic, the A3 yellow cement that was photocured for 20 s exhibited the lowest MTBS, while the transparent cement that was photocured for 40 s presented the highest MTBS.Conclusions: For the 2.5-mm-thick 5M3 ceramic restorations, the MTBS of ceramic cemented to dentin significantly increased. The dual-curing cement Variolink II photocured for 40 s is not recommended for cementing the Base Dentine 5M3 feldspathic ceramic to dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study assessed the effect of different etching durations of feldspathic ceramic with hydrofluoric acid (HF) and ultrasonic cleaning of the etched ceramic surface on the microtensile bond strength stability of resin to a feldspathic ceramic. The research hypotheses investigated were: (1) different etching times would not affect the adhesion resistance and (2) ultrasonic cleaning would improve the adhesion. Ceramic blocks (6 x 6 x 5 mm) (N = 48) were obtained. The cementations surfaces were duplicated in resin composite. The six study groups (n = 8) were: G1Etching with 10% aqueous HF (30 s) + silane; G 210% HF (1 min) + silane; G3-10% HF (2 min) + silane; G4-10% HF (30 s) + ultrasonic cleaning (4 min) in distilled water + silane; G5-10% HF (1 min) + ultrasonic cleaning + silane; G6-10% HF (2 min) ultrasonic cleaning + silane. The cemented blocks were sectioned into microbars for the microtensile test. The etching duration did not create significant difference among the groups (p = .156) but significant influence of ultrasonic cleaning was observed (p = .001) (Two-way ANOVA and Tukey's test, p > 0.05). All the groups after ultrasonic cleaning presented higher bond strength (19.38-20.08 MPa) when compared with the groups without ultrasonic cleaning (16.2117.75 MPa). The bond strength between feldspathic ceramic and resin cement was not affected by different etching durations using HF. Ultrasonic cleaning increased the bond strength between ceramic surface and resin cement, regardless of the etching duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate the adhesive potential of novel zirconia primers and universal adhesives to surface-treated zirconia substrates.Methods: Zirconia bars were manufactured (3.0 mm x 3.0 mm x 9.0 mm) and treated as follows: no treatment (C); air abrasion with 35 mu m alumina particles (S); air abrasion with 30 mu m silica particles using one of two systems (Rocatec or SilJet) and; glazing (G). Groups C and S were subsequentially treated with one of the following primers or adhesives: ZP (Z-Prime Plus), AZ (AZ Primer); MP (Monobond Plus); SU (ScotchBond Universal) and; EA (an Experimental Adhesive). Groups Rocatec and SilJet were silanized prior to cementation. Samples form group G were further etched and silanized. Bars were cemented (Multilink) onto bars of a silicate-based ceramic (3.0 mm x 3.0 mm x 9.0 mm) at 90 degrees angle, thermocycled (2.500 cycles, 5-55 degrees C, 30 s dwell time), and tested in tensile strength test. Failure analysis was performed on fractured specimens to measure the bonding area and crack origin.Results: Specimens from group C did not survive thermocycling, while CMP, CSU and CEA groups survived thermocycling but rendered low values of bond strength. All primers presented a better bond performance after air abrasion with Al2O3 particles. SilJet was similar to Rocatec, both presenting the best bond strength results, along with SMP, SSU and CEA. G promoted intermediate bond strength values. Failure mode was predominately adhesive on zirconia surface combined to cohesive of the luting agent.Conclusions: Universal adhesives (MP, SU, EA) may be a considerable alternative for bonding to zirconia, but air abrasion is still previously required. Air abrasion with silica particles followed by silane application also presented high bond strength values. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting.Material and Methods: One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37 degrees C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (alpha=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (p<0.05). The mean shear bond strength values (MPa) for the enamel groups were X=20.2 +/- 5.61, XL=23.6 +/- 4.92, S=20.8 +/- 4.55, SL=22.1 +/- 5.14 and for the dentin groups were X=14.1 +/- 7.51, XL=22.2 +/- 6.45, S=11.2 +/- 5.77, SL=15.9 +/- 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased).Conclusion: Nd:YAG laser application prior to photopolymerization of adhesive systems significantly increased the bond strength to dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study evaluated the influence of different surface treatments on the resin bond strength/light-cured characterizing materials (LCCMs), using the intrinsic characterization technique. The intrinsic technique is characterized by the use of LCCMs between the increments of resin composite (resin/thin film of LCCM/external layer of resin covering the LCCM).Materials and Methods: Using a silicone matrix, 240 blocks of composite (Z350/3M ESPE) were fabricated. The surfaces received different surface treatments, totaling four groups (n=60): Group C (control group), no surface treatment was used; Group PA, 37% phosphoric acid for one minute and washing the surface for two minutes; Group RD, roughening with diamond tip; and Group AO, aluminum oxide. Each group was divided into four subgroups (n=15), according to the LCCMs used: Subgroup WT, White Tetric Color pigment (Ivoclar/Vivadent) LCCM; Subgroup BT, Black Tetric Color pigment (Ivoclar/Vivadent) LCCM; Subgroup WK, White Kolor Plus pigment (Kerr) LCCM; Subgroup BK, Brown Kolor Plus pigment (Kerr) LCCM. All materials were used according to the manufacturer's instructions. After this, block composites were fabricated over the LCCMs. Specimens were sectioned and submitted to microtensile testing to evaluate the bond strength at the interface. Data were submitted to two-way analysis of variance (ANOVA) (surface treatment and LCCMs) and Tukey tests.Results: ANOVA presented a value of p<0.05. The mean values (+/- SD) for the factor surface treatment were as follows: Group C, 30.05 MPa (+/- 5.88)a; Group PA, 23.46 MPa (+/- 5.45)b; Group RD, 21.39 MPa (+/- 6.36)b; Group AO, 15.05 MPa (+/- 4.57)c. Groups followed by the same letters do not present significant statistical differences. The control group presented significantly higher bond strength values than the other groups. The group that received surface treatment with aluminum oxide presented significantly lower bond strength values than the other groups.Conclusion: Surface treatments of composite with phosphoric acid, diamond tip, and aluminum oxide significantly diminished the bond strength between composite and the LCCMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached dentin. A total of 120 bovine incisors were distributed into two groups: C- without bleaching; and B- bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: N- without laser treatment; Nd- Nd:YAG laser irradiation; and Er- Er:YAG laser irradiation. The adhesive system (Adper Single Bond 2) was applied and composite build-ups were constructed with Filtek Supreme (3M/ESPE). The teeth were sectioned to obtain dentin-resin sticks (1x1mm(2)) and tested by microtensile bond testing. The bond strength values in group B, subgroup N (16.1 +/- 3.5MPa) presented no significant difference compared with group B, subgroup Er (14.7 +/- 6.1MPa). Group C, subgroup N (26.8 +/- 7.4MPa) presented no significant difference compared with group B, subgroup Nd (28.8 +/- 5.6MPa). Group C, subgroup Nd (36.1 +/- 7.9MPa) presented a significant increase in bond strength compared with the other groups. The Er:YAG laser did not influence the bond strength of bleached specimens, and the use of the Nd:YAG laser on bleached specimens was able to reverse the immediate effects of bleaching, obtaining bond strength values similar to those of the control group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of Er:YAG and Nd:YAG lasers on the shear bond strength of composite resin to dentin. The coronal portion of 56 human molars was divided into three parts, and the dentin thickness was standardized at 2 mm. A 3-mm hole was marked in the center of each tooth with sealing tape paper. The specimens (n = 14) were then divided into four groups: (1) acid etching + Single Bond (SB) (control), (2) acid etching + SB + Nd: YAG laser irradiation (before adhesive curing), (3) thermal etching with the Er: YAG laser + SB, and (4) thermal etching with the Er: YAG laser + SB + Nd: YAG laser irradiation (before adhesive curing). A composite resin cylinder was built into the delimited area for conducting the shear bond strength test on the universal testing machine. The means +/- standard deviations were: group 1, 17.05 +/- 4.15 MPa; group 2, 16.90 +/- 3.36 MPa; group 3, 12.12 +/- 3.85 MPa; and group 4, 12.92 +/- 2.73 MPa. Groups 1 and 2 presented significantly higher values than groups 3 and 4. It was concluded that conventional etching with 37% phosphoric acid yielded significantly higher bond strength values compared to thermal etching with the Er:YAG laser. The Nd:YAG laser did not significantly influence the bond strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)