272 resultados para heart rate variability
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Studies have investigated the influence of neuromuscular electrostimulation on the exercise/muscle capacity of patients with heart failure (HF), but the hemodynamic overload has never been investigated. The aim of our study was to evaluate the heart rate (HR), systolic and diastolic blood pressures in one session of strength exercises with and without neuromuscular electrostimulation (quadriceps) in HF patients and in healthy subjects. Methods: Ten (50% male) HF patients and healthy subjects performed three sets of eight repetitions with and without neuromuscular electrostimulation randomly, with one week between sessions. Throughout, electromyography was performed to guarantee the electrostimulation was effective. The hemodynamic variables were measured at rest, again immediately after the end of each set of exercises, and during the recovery period. Results: Systolic and diastolic blood pressures did not change during each set of exercises among either the HF patients or the controls. Without electrostimulation: among the controls, the HR corresponding to the first (85 ± 13 bpm, p = 0.002), second (84 ± 10 bpm, p < 0.001), third (89 ± 17, p < 0.001) sets and recuperation (83 ± 16 bpm, p = 0.012) were different compared to the resting HR (77 bpm). Moreover, the recuperation was different to the third set (0.018). Among HF patients, the HR corresponding to the first (84 ± 9 bpm, p = 0.041) and third (84 ± 10 bpm, p = 0.036) sets were different compared to the resting HR (80 ± 7 bpm), but this increase of 4 bpm is clinically irrelevant to HF. With electrostimulation: among the controls, the HR corresponding to the third set (84 ± 9 bpm) was different compared to the resting HR (80 ± 7 bmp, p = 0.016). Among HF patients, there were no statistical differences between the sets. The procedure was well tolerated and no subjects reported muscle pain after 24 hours. Conclusions: One session of strength exercises with and without neuromuscular electrostimulation does not promote a hemodynamic overload in HF patients. (Cardiol J 2011; 18, 1: 39-46)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The serum and urine Na+ and K+ levels and their relationship with electrocardiography characteristics,were studied in 15 male adult mongrel dogs, treated twice-a-day,with 2, 4, 8mg/kg of live weight doses of furosemide and furosemide associated with KCl during 35 days. Urine samples were analyzed weekly in order to determine the Na+ and K+ concentrations and to evaluate the urinary excretion of both cations. Electrocardiography was performed simultaneously, using limb derivations, speed 50mm/sec and calibration of 1 cm corresponding to 1mV. Data showed decreased seric concentrations of Na+ and Ki, increase in Na+ fractional excretion between days 7 and 21 of the treatment, slower heart rate and longer PR, QRS and QT intervals in the ECG. Briefly 2mg/kg furosemide associated with KCl was the most suitable treatment since it induced lesser side effects.
Resumo:
Objectives To investigate the effects of levomepromazine and different desflurane concentrations upon electrocardiographic variables.Animals Twenty adult mongrel dogs of both sexes weighing 6-28 kg.Methods Dogs were divided into two groups of 10 animals. Group I received 1 mg kg(-1) lV of levomepromazine and 15 minutes later anesthesia was induced with propofol (3 mg kg(-1) IV). Desflurane end-tidal concentration was set at 1.6 MAC. After 30 minutes at this concentration, measurements were taken and the end-tidal concentration was reduced to 1.4 MAC. Thereafter, it was reduced to 1.2 and then 1.0 MAC at 1.5-minute intervals. The same procedure was followed for group 2, except that levomepromazine was replaced with 0.2 mL kg(-1) of 0.9% saline solution and more propofol was needed for induction (7 mg kg(-1)). The animals' body temperature was maintained between 38.3 and 39 degreesC using a heating pad. The electrocardiographic tracing was obtained from lead II throughout the experimental period. The measurements were taken immediately before the administration of levomepromazine or placebo (T-1), 15 minutes after pre-medication (T-2) and 30 minutes after the establishment of 1.6 MAC (T-3)The other measurements were made at the concentrations of 1.4, 1.2, and 1.0 MAC, respectively (T4-6). The numerical data were submitted to analysis of variance plus F-test (p < 0.05).Results the dogs that received levomepromazine had a decrease in heart rate. However, in both groups it increased with desflurane administration. Levomepromazine, in association with desflurane, did not induce significant electrocardiographic changes, and all mean values (except P-wave duration) were within the reference range for this species.Conclusions and clinical relevance This study documented that levomepromazine, in association with desflurane, does not induce significant changes in electrocardiographic variables, suggesting that this drug combination has minimal effect on myocardial conduction.
Resumo:
Objective: To determine the cardiovascular effects of desflurane in dogs following acute hemorrhage.Design: Experimental study.Animals: Eight mix breed dogs.Interventions: Hemorrhage was induced by withdrawal of blood until mean arterial pressure (MAP) dropped to 60 mmHg in conscious dogs. Blood pressure was maintained at 60 mmHg for 1 hour by further removal or replacement of blood. Desflurane was delivered by facemask until endotracheal intubation could be performed and a desflurane expiratory end-tidal concentration of 10.5 V% was maintained.Measurements and main results: Systolic, diastolic, and mean arterial blood pressure (SAP, DAP and MAP), central venous pressure (CVP), cardiac output (CO), stroke volume (SV), cardiac index (0), systemic vascular resistance (SVR), heart rate (HR), respiratory rate (RR), partial pressure of carbon dioxide in arterial blood (PaCO2), and arterial pH were recorded before and 60 minutes after hemorrhage, and 5, 15, 30, 45 and 60 minutes after intubation. Sixty minutes after hemorrhage, SAP, DAP, MAP, CVP, CO, Cl, SV, PaCO2, and arterial pH decreased, and HR and RR increased when compared with baselines values. Immediately after intubation, MAP and arterial pH decreased, and PaCO2 increased. Fifteen minutes after intubation SAP, DAP, MAP, arterial pH, and SVR decreased. At 30 and 45 minutes, MAP and DAP remained decreased and PaCO2 increased, compared with values measured after hemorrhage. Arterial pH increased after 30 minutes of desflurane administration compared with values measured 5 minutes after intubation.Conclusions: Desflurane induced significant changes in blood pressure and arterial pH when administered to dogs following acute hemorrhage.
Resumo:
Objective: To evaluate the cardiorespiratory effects of continuous infusion of ketamine in hypovolemic dogs anesthetized with desflurane.Design: A prospective experimental study.Animals: Twelve mixed breed dogs allocated into 2 groups: saline (n=6) and ketamine (n=6).Interventions: After obtaining baseline measurements (time [T] 0) in awake dogs, hypovolemia was induced by the removal of 40 mL of blood/kg over 30 minutes. Anesthesia was induced and maintained with desflurane (1.5 minimal alveolar concentration) and 30 minutes later (T75) a continuous intravenous (IV) infusion of saline or ketamine (100 mu g/kg/min) was initiated. Cardiorespiratory evaluations were obtained 15 minutes after hemorrhage (T45), 30 minutes after desflurane anesthesia, and immediately before initiating the infusion (T75), and 5 (T80), 15 (T90), 30 (T105) and 45 (T120) minutes after beginning the infusion.Measurements and main results: Hypovolemia (T45) reduced the arterial blood pressures (systolic arterial pressure, diastolic arterial pressure [DAP] and mean arterial pressure [MAP]), cardiac (CI) and systolic (SI) indexes, and mean pulmonary arterial pressure (PAP) in both groups. After 30 minutes of desflurane anesthesia (T75), an additional decrease of MAP in both groups was observed, heart rate was higher than T0 at T75, T80, T90 and T105 in saline-treated dogs only, and the CI was higher in the ketamine group than in the saline group at T75. Five minutes after starting the infusion (T80), respiratory rate (RR) was lower and the end-tidal CO(2) (ETCO(2)) was higher compared with values at T45 in ketamine-treated dogs. Mean values of ETCO(2) were higher in ketamine than in saline dogs between T75 and T120. The systemic vascular resistance index (SVRI) was decreased between T80 and T120 in ketamine when compared with T45.Conclusions: Continuous IV infusion of ketamine in hypovolemic dogs anesthetized with desflurane induced an increase in ETCO(2), but other cardiorespiratory alterations did not differ from those observed when the same concentration of desflurane was used as the sole anesthetic agent. However, this study did not evaluate the effectiveness of ketamine infusion in reducing desflurane dose requirements in hypovolemic dogs or the cardiorespiratory effects of ketamine-desflurane balanced anesthesia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)