204 resultados para Sole carbon source
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Selection of the best source of carbon for production of recombinants enzymes in liquid fermentation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The possibility of using yeast from alcohol distilleries as a source of nutrients in soil was investigated. The following treatments were used: no fertilization (control), 0.5% (w/w) yeast, 1% (w/w) yeast, and NPK. The decomposition of yeast was monitored for 90 days in two soils. The CO, production and the microbial biomass were increased by art average of 1- to 3-fold by yeast incorporation compared to control. Protease activity also was enhanced 3- to 8-fold in the soils supplemented with yeast compared to control. The phosphatase activities were higher than control only during the first days. While nitrate contents increased in all treatments compared to control, available P only increased in the soils amended with 1%, yeast or NPK by 45-119% and 309-489%, respectively. These results indicate that there exists an excellent potential for the use of yeast in the soil as a source of nitrate and available P for plant nutrition. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This study proposed the use of the stable isotope technique to track the type of food utilized by pacu Piaractus mesopotamicus larvae during their development, and to identify the moment when the larvae start using nutrients from the dry diet by retaining its carbon and nitrogen atoms in their body tissues. Five-day-old pacu larvae at the onset of exogenous feeding were fed Artemia nauplii or formulated diet exclusively; nauplii+formulated diet during the entire period; or were weaned from nauplii to a dry diet after 3, 6 or 12 days after the first feeding. delta(13)C and delta(15)N values for Artemia nauplii were -15.1 parts per thousand and 4.7 parts per thousand, respectively, and -25.0 parts per thousand and 7.4 parts per thousand for the dry diet. The initial isotopic composition of the larval tissue was -20.2 parts per thousand and 9.5 parts per thousand for delta(13)C and delta(15)N respectively. Later, at the end of a 42-day feeding period, larvae fed Artemia nauplii alone reached values of -12.7 parts per thousand and 7.0 parts per thousand for delta(13)C and delta(15)N respectively. Larvae that received the formulated diet alone showed values of -22.7 parts per thousand for delta(13)C and 9.6 parts per thousand for delta(15)N. The stable isotope technique was precise, and the time at which the larvae utilized Artemia nauplii, and later dry diet as a food source could be clearly defined.
Resumo:
We present a generic spatially explicit modeling framework to estimate carbon emissions from deforestation (INPE-EM). The framework incorporates the temporal dynamics related to the deforestation process and accounts for the biophysical and socioeconomic heterogeneity of the region under study. We build an emission model for the Brazilian Amazon combining annual maps of new clearings, four maps of biomass, and a set of alternative parameters based on the recent literature. The most important results are as follows: (a) Using different biomass maps leads to large differences in estimates of emission; for the entire region of the Brazilian Amazon in the last decade, emission estimates of primary forest deforestation range from 0.21 to 0.26 similar to Pg similar to C similar to yr-1. (b) Secondary vegetation growth presents a small impact on emission balance because of the short duration of secondary vegetation. In average, the balance is only 5% smaller than the primary forest deforestation emissions. (c) Deforestation rates decreased significantly in the Brazilian Amazon in recent years, from 27 similar to Mkm2 in 2004 to 7 similar to Mkm2 in 2010. INPE-EM process-based estimates reflect this decrease even though the agricultural frontier is moving to areas of higher biomass. The decrease is slower than a non-process instantaneous model would estimate as it considers residual emissions (slash, wood products, and secondary vegetation). The average balance, considering all biomass, decreases from 0.28 in 2004 to 0.15 similar to Pg similar to C similar to yr-1 in 2009; the non-process model estimates a decrease from 0.33 to 0.10 similar to Pg similar to C similar to yr-1. We conclude that the INPE-EM is a powerful tool for representing deforestation-driven carbon emissions. Biomass estimates are still the largest source of uncertainty in the effective use of this type of model for informing mechanisms such as REDD+. The results also indicate that efforts to reduce emissions should focus not only on controlling primary forest deforestation but also on creating incentives for the restoration of secondary forests.
Resumo:
Os solos agrícolas podem atuar como dreno ou fonte de C atmosférico, dependendo do sistema de manejo adotado. Este estudo foi desenvolvido em experimento de longa duração (22 anos), durante o período de 30 dias do outono, com o objetivo de avaliar o impacto de sistemas de preparo de solo (preparo convencional-PC e plantio direto-PD) nas emissões de C-CO2 de um Latossolo Vermelho distrófico, em Cruz Alta, RS. As emissões de C-CO2 do solo foram avaliadas com câmaras dinâmica (Flux Chamber 6400-09, Licor) e estática (com captação em solução alcalina), imediatamente após a colheita da soja. A temperatura e a umidade do solo foram registradas, concomitantemente com as emissões de C-CO2, por meio de sensor de temperatura e TDR manual, respectivamente, integrantes do Licor-6400. Estimou-se que, em 30 dias, uma quantidade equivalente a menos de 30 % do C aportado pelos resíduos de soja foi emitida na forma de C-CO2. As emissões de C-CO2 no solo em PD foram similares às emissões do solo em PC, independentemente do tipo de câmara utilizada. Diferenças entre sistemas de preparo quanto à emissão de C-CO2, avaliadas com a câmara dinâmica, foram verificadas somente a curto prazo (leituras diárias), com o PD apresentando maiores emissões do que o PC no início do período experimental e menores no final. A câmara dinâmica foi mais eficiente do que a estática em captar as alterações das emissões de C-CO2 em função da variação da temperatura e a porosidade preenchida por água (PPA) no solo em PD, as quais explicaram 83 e 62 % das emissões de C-CO2, respectivamente. O fator Q10, que avalia a sensibilidade da emissão de C-CO2 à temperatura do solo, foi estimado em 3,93, indicando alta sensibilidade da atividade microbiana à temperatura do solo durante o outono. As emissões de C-CO2 registradas no solo em PD com a câmara estática foram correlacionadas às da câmara dinâmica, porém com valores subestimados em relação àquela notadamente nos maiores valores de fluxo. em condições de baixa temperatura e PPA, o preparo de solo induziu limitado incremento de emissão de C-CO2.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Determining the variability of carbon dioxide emission from soils is an important task as soils are among the largest sources of carbon in biosphere. In this work the temporal variability of bare soil CO2 emissions was measured over a 3-week period. Temporal changes in soil CO2 emission were modelled in terms of the changes that occurred in solar radiation (SR), air temperature (T-air), air humidity (AR), evaporation (EVAP) and atmospheric pressure (ATM) registered during the time period that the experiment was conducted. The multiple regression analysis (backward elimination procedure) includes almost all the meteorological variables and their interactions into the final model (R-2 = 0.98), but solar radiation showed to be the one of the most relevant variables. The present study indicates that meteorological data could be taken into account as the main forces driving the temporal variability of carbon dioxide emission from bare soils, where microbial activity is the sole source of carbon dioxide emitted. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work the influence of two different iron sources, Fe(NO3)(3) and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO3)(3), the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. on the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5 L capacity and 4.5 cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9 L h(-1), in the presence of 10.0 mmol L-1 H2O2 and 1.0 mmol L-1 ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)