345 resultados para Soil water storage


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this research was to study the effects of five different treatments of grass (Brachiaria decumbens) straw mulch on common beans (Phaseolus vulgaris L.): 0% (0 t.ha-1), 25% (2,25 t.ha-1), 50% (4,5 t.ha-1), 75% (6,75 t. ha-1) and 100% (9,0 t/ha) designed by randomized blocks, with four replicates. The irrigation was applied when minimum soil water potential were reached about - 30kPa. The water management based on tensiometers and soil water characteristic curve. A microsprinkler irrigation system was used. The experiment was set up at the Experimental Station of Embrapa Rice and Bean (Empresa Brasileira de Pesquisa Agropecuária Arroz e Feijão) at Santo Antonio de Goiás, Brazil, in a Dark - Red Latosol soil. The results showed: the bean yield and his components were not affected by treatments, except grain number/pod,. The mulch increased the water use efficiency and, consequently, decreased the number of irrigations when the mulch reached more than 50% straw mulch. The treatment with 100% of mulching presented the largest leaf area index and dry matter accumulation was not affected by mulching.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this experiment was to study the latent and sensible heat variation determined by Bowen ratio from an irrigated soybean crop. A micrometeorological station with vertical displacement was constructed to maintain the same level of all measures over the canopy. The station was installed in the center of the crop, and it was over 130 m away from the main edge of the predominant wind direction. Fluxes were calculated by vertical temperature gradient determined at 0.15 and 1.15 m over the canopy. The latent heat flux was the mean energy consumer when the canopy covered the soil totally, and there were good soil water conditions. The sensible heat flux was greater when the soil was not totally covered by the canopy. The canopy was essential on the amount of latent heat dissipated by the crop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sinfony) were fabricated according to the manufacturer's instructions. The specimens were randomly assigned to one of the following two treatment conditions (9 blocks per treatment): (1) 10% hydrofluoric acid (HF) for 90 s (Dentsply) + silanization, (2) silica coating with 30-Ìm SiOx particles (CoJet) + silanization. After surface conditioning, the bonding agent was applied (Adper Single Bond) and light polymerized. The composite resin (W3D Master) was condensed and polymerized incrementally to form a block. Following storage in distilled water at 37°C for 24 h, the indirect composite/resin blocks were sectioned in two axes (x and y) with a diamond disk under coolant irrigation to obtain nontrimmed specimens (sticks) with approximately 0.6 mm2 of bonding area. Twelve specimens were obtained per block (N = 216, n = 108 sticks). The specimens from each repaired block were again randomly divided into 2 groups and tested either after storage in water for 24 h or thermocycling (6000 cycles, 5°C to 55°C). The microtensile bond strength test was performed in a universal testing machine (crosshead speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using two-way ANOVA (α = 0.05). Results: Both surface conditioning (p = 0.0001) and storage conditions (p = 0.0001) had a significant effect on the results. After 24 h water storage, silica coating and silanization (method 2) showed significantly higher bond strength results (46.4 ± 13.8 MPa) than that of hydrofluoric acid etching and silanization (method 1) (35.8 ± 9.7 MPa) (p < 0.001). After thermocycling, no significant difference was found between the mean bond strengths obtained with method 1 (34.1 ± 8.9 MPa) and method 2 (31.9 ± 7.9 MPa) (p > 0.05). Conclusion: Although after 24 h of testing, silica coating and silanization performed significantly better in resin-resin repair bond strength, both HF acid gel and silica coating followed by silanization revealed comparable bond strength results after thermocycling for 6000 times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experiment with four treatments was carried out on the experimental area of ADEI to compare three methods of water use requirement: ETc (T1) - irrigation based on crop evapotranspiration (ETc); Tensiometers (T2 and T3) - irrigations were made through reading of tensiometers installed at 40 cm deep and, Control (T4) - only one irrigation to promote the seedlings emergence. Both Class A pan and soil water depletion methods presented good results when the crop was developed without restraint of water. The Katerji method can be utilized in conditions of water restriction. Irrigation frequency was more important than amount of applied water for higher yield.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods: Metallic frameworks (25 mm × 3 mm × 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 μm aluminum oxide at the central area of the frameworks (8 mm × 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 °C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 °C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 °C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (α = 0.05). Results: The mean flexural strength values for the ceramic-gold alloy combination (55 ± 7.2 MPa) were significantly higher than those of the ceramic-Ti cp combination (32 ± 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 ± 6.6 and 53 ± 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 ± 6.8 and 29 ± 6.8 MPa, respectively) compared to the control group (58 ± 7.8 and 39 ± 5.1 MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey's test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance: Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. © 2007 Academy of Dental Materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The studies were developed with plants of Eucalyptus urograndis under greenhouse conditions, at Paulista State University (UNESP), Botucatu - SP, from March to July, 2005. The objective was to evaluate hydric stress influence on morphological and physiological characteristics of plants in clayay (1) and medium (2) soil texture. Two water treatment were used: -0.03 and -1.5 MPa minimum soil water potentials (□w). Plants from soil 2 and - 1.5MPa showed 43% reduction on leaf área, 34% on base stem diameter, 54% on aerial vegetal dry matter and plants from soil 1 presented 42.3% reduction on leaf área, 39,5% base stem diameter and 42% dry matter root reduction in relation to -0.03 MPa. The lowest leaf water potential (□f) value was-17.166 MPa on □w = -1.5 MPa and soil 2 and the greatest one on soil 1 and □w = -0.03 MPa., -6.766 MPa. The treatment -0.03MPa showed about 11,3% higher transpiration values than those plants from -1.5MPa. The higher Rs value (2.149 s.cm-1) occurred on plants under -1.5MPa and soil 2. There was significant correlation between Tf and Rs, and the treatmens from medium soil were more sensitive, reaching until 32°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this research was to study three methods of parameter determination for irrigation control under different tensions in common bean (Phaseolus vulgaris L.). The treatments were a combination of three methods of parameter determination for irrigation control (tensiometer, water retention curve, USWB Class A pan) with three soil water tensions (1:-30 kPa; 2:-60, kPa both for the whole plant cycle; 3:-60 kPa for the vegetative phase and -30 kPa for the reproductive phase). The experimental design was randomized blocks, factorial 32 with three replicates. Although no significant effect on water use efficiency was found, a tendency for increasing water use efficiency in treatments with tensions of -60 kPa at the vegetative phase and -30 kPa at the reproductive phase was observed in all methods of parameter determination for irrigation control. Water was saved as less irrigation was applied during the vegetative phase and more irrigation at the reproductive phase. No precipitation was observed from June to September 1995, leading to a high yield and therefore to a higher water use efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the relationships between topography, soil properties and tree species composition in a Neotropical swamp forest in southeastern Brazil. Plots were sampled in the forest, encompassing three different soil ground water regimes along the topographical declivity. All non-climbing plant individuals with trunk height >1.3 m were sampled. A canonical correspondence analysis-CCA-of the species-environmental relationships grouped tree species according to drainage and chemical soil conditions. A total of 86 species were found, being 77 species in the inferior, 40 species in the intermediate and 35 species in the superior topographic section. Some species were among the 10 most abundant ones, both in the overall sampled area and in each topographical section, with alternation events occurring only with their abundance position. However, substantial differences in floristic composition between sections were detected in a fine spatial scale, due to higher number of species, diversity index (H′) and species unique (exclusives) in the inferior topographic section. These higher values can be attributed to its higher spatial heterogeneity that included better drained and seasonally waterlogged soils, higher soil fertility and lower acidity. The increase of the soil water saturation and the uniform conditions derived from the superficial water layer has led to a lower number of species and an increase on the palm trees abundance in the intermediate and superior sections. Our results showed that at a small spatial scale niche differentiation must be an important factor related to the increase of the local diversity. The wide distribution of the most abundant species in the studied area and the increase of local diversity corroborate the pattern of distribution of species in larger scales of swamp forests, in which the most abundant species repeat themselves in high densities in different remnants. However, the floristic composition of each remnant is strongly variable, contributing to the increase of regional diversity. © 2008 Springer Science+Business Media B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although the management of the coffee crop is well established in Brazil, there is still room for its improvement in relation natural resources available in each region, aiming the increase in productivity. Here are presented results regarding the fate of the fertilizer nitrogen (N) applied to a coffee plantation related to the prevailing soil water conditions. Soil water balances are discussed, which allowed evaluation of the root distribution, determinations of the crop coefficient and of the soil water conditions during the development of the crop. Approximately, 60% of the root system was distributed in the 0-0.3 m soil layer and the average crop coefficient was 1.1 for 3 to 5 year old plants. Using an N label, the 15N, it was possible to study the distribution of N in the plant and in the soil and establishes general N balances, which also include losses like leaching and volatilization. After two years of ammonium sulfate application, at rates of 280 (1st year) and 350 (2nd year) kg.ha-1 of N, in four equal application performed during the period of positive growth rate, the recuperation of fertilizer N were 19.1% by the aerial plant part and 9.4% by the roots, 12.6% remained in the soil and 11.2% in the litter; 0.9% was lost by volatilization and 2.3% by leaching; 26.3% was exported through harvesting and 18.2% remained in non evaluated compartments. From the applied 630 kg.ha -1 of N during the two years, 180 kg.ha -1 of N were found in the plant (shoot and root), which corresponds to 28.6%; 150 kg.ha -1 of N remained available for the next years(soil and litter), and only 20 kg.ha -1 of N were effectively lost (volatilization and leaching).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No tillage management is widely used by the Brazilian farmers and technicians like a soil conservation system, which reduces the soil losses by water erosion, increasing the infiltrated and stored water in soil, warranting environmental sustainability. No-tillage system does not invert the soil; it causes the creation of a compacted layer. The samples were taken in the agricultural year 2005/2006 in an Oxisoil at Selviria (MS/Brazil). The tillage management in the last 15 years was no-tillage system with crop rotation (maize -Zea mays L./bean - Phaseolus vulgaris L.). The analyzed soil physical properties were bulk density (BS), gravimetric water content (U) and mechanical resistance to penetration (RP) at three depths: 0-0.10 m, 0.10-0.20 m and 0.20-0.30 m. The samples were taken in a mesh with 117 sampled points covering an area of 0.16 ha. It was investigated the existence of compacted soil layer, using the mechanical resistance to penetration to 0.60 m depth with soil water content at field capacity. The data shows low coefficient of variation, except the resistance penetration data. Bulk density and gravimetric water content has a normal distribution. Only resistance to penetration at 0.10-0.20 m depth layer has a normal distribution. The correlation between different properties was low. The bulk density increases with depth; the increase of the values of soil bulk density are consistent with data in other papers, indicating there are not compaction problems for the crop development at the study area. Most of the values of resistance to penetration are lower than 2 MPa, being this value restrictive for root development. The analysis of resistance to penetration profile 0 to 0.60 m shows a compacted layer between 0.20-0.30 m. This compacted layer was caused by the conventional tillage system used at this area before the use of no-tillage system. The soil bulk density has higher values at the upper area, that it shows higher values of soil compaction. Although the values of bulk density and resistance to penetration are high, the area does not show great problems of soil compaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intensive use of the land for agricultural propose causes a series of modifications in attributes, which can take to soil degradation. In this context, the main goal of this research was to evaluate the influence of the soil tillage systems and management on its physical and hydric characteristics. The evaluations were carried out in July of 1999, at experimental plots of a Latossolo vermelho, a clay oxisoil, in the Faculdade de Engenharia Agrícola of the UNICAMP, at the county of Campinas, state of São Paulo. These plots were managed with the following treatments, along a period of eight years: no-tillage, chisel ploughing, conventional system with disk ploughing and revolving hoe. The evaluated physical and hydric parameters of the soil were: soil bulk density, particle density, total porosity, macro-porosity, micro-porosity, soil-water retention curve, hydraulic conductivity and basic infiltration. Significant differences were observed between the treatments on soil bulk density, infiltration, total porosity, macro-porosity and the micro-porosity. The chisel ploughing and no-tillage systems presented the higher values of soil bulk density; nevertheless in these conservationist systems were observed the higher values of basic infiltration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scope of this experiment is to study the influence of soil water potential on lettuce productivity, particularly in relation to deficit and excess of water. Four lettuce cultivars (Americana, Roxa, Crespa and Mimosa), four minimum soil water potential (-0,001, -0,005, -0,012 and 0,022 MPa) and three replicates in experimental randomized design. The results allowed concluding that the -0,012 MPa has the tendency to produce the highest green mass among her soil water potential applied. The Mimosa showed the tendency to produce the highest evapotranspiration among the cultivars. The cultivars Americana e -0,05 MPa was the best combination (148,33g) the worst was the Roxa and -0,022 MPa minimum soil water potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to evaluate Eucaliptus grandis genotypes (Clones 105 and 433) in relation to drought tolerance, through growth plant analysis. Black PVC pots with 10 liter volume were used for cultivate plants in polyethilene greenhouse oriented east/west. Completely randonmized design with four treatments was used: two clones and two minimum soil water potentials (- 0.03 and -1,5 MPa) and sixteen replicates. Pots were weighed daily in order to evaluate water content and characteristic soli water curve was determined. Plant development was obtained each 15 days from planting until 60 days through total dry matter (DM), leaf area index (LAI), leaf area ratio (LAR), net assimilative ratio (NAR), specific leaf area (SLA), relative growth ratio (RGR) and absolute growth ratio (AGR). Results showed that clone 105 presented less sensibility to water deficit, which qualify it as genetic material for use under dry soil conditons. On the other hand, both clones had similar behavior with no water restrictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to study the dimensional parameters of the drainage net using 12 third-order ramification hydrological watersheds: 4 watersheds per soil unit (LVA, RL and RQ). The soil distinction was realized using ''t'' test to verify the orthogonal contrast among three soil averages and the grouping analysis and mean components. The results showed that the multivariance analysis was not able to discriminate three soils using the dimensional analysis. The t test of this isolated variable allowed discriminating RQ soil from LVA and RL soil units; but it was not sensitive to discriminate the LVA soil and RL unit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to calculate the daily stress degree of a bean crop submitted to four water regime applications, cover crop and air daily measurements temperatures were accomplished by using a hand-held infrared thermometer. The treatments did not present crop water stress except the control (without irrigation). The highest yield was obtained by the treatment that received less irrigation frequency, and among the treatments that had the same number of irrigation. The largest yield was obtained with the one that received larger amount of applied water. The largest irrigation frequency did not result in larger productivity. The methodologies used for the irrigation planning were efficient for the replacement of soil water. The daily stress degree index was effective in determining crop water stress; and it was reliable presenting negative values in good water soil condition.