218 resultados para PLA. Biodegradation. CCRD. Lactic acid
Resumo:
The aim of the present study was to investigate the effect of isofl avones supplementation of a fermented soy product on its sensory acceptance, physicochemical properties and probiotic cell viable count. Additionally we also investigated the ability of the mixed starter cultures (Enterococcus faecium CRL 183 and Lactobacillus helveticus 416) to modify the isofl avones profi le of soy product during the fermentation process. Three products were analysed: soy product fermented with E. faecium CRL 183 and L. helveticus 416, isofl avonessupplemented soy product (fermented with E. faecium CRL 183 and L. helveticus 416; 50mg/100g, Isofl avin®, Galena, Brazil) and unfermented soy product. A panel of judges evaluated the acceptability of the samples on a nine point structured hedonic scale. The chemical composition namely fat, protein, ash and total carbohydrate contents, pH, enumeration of viable Lactobacillus spp. and Enterococcus spp. and quantifi cation of isofl avones using HPLC were investigated. All determinations were conducted after 7 days storage at 10°C. The sensorial acceptance was reduced in the isofl avones-supplemented soy product, but this effect was not signifi cant compared to the sample without isofl avones addition. Chemical composition did not differ (p<0.05) among the samples. Cell viable counts were reduced and total fermentation time was longer in the isofl avonessupplemented soy product, suggesting that the isofl avone addition could inhibit the starter cultures. However, all the products may be considered probiotic since they exhibited lactic acid bacterial populations varying from 2.3 x 109 up to 1.22 x 1010 CFU/mL. Fermentation of soymilk did not change the isofl avones profi le. In conclusion, it was possible to obtain a fermented soy product containing a high isofl avones concentration, adequate sensory and chemical characteristics and lactic acid bacterial viability suffi ciently high to characterize the product as a probiotic. The mixed starter culture was not able to convert the glycoside isofl avones into aglycone or produce equol during the fermented soy product processing.
Resumo:
The ingestion of probiotic lactic acid bacteria has been evaluated and noted that it has an effect on the balance of desirable microbiota in the gastrointestinal tract. Lactobacillus gasseri demonstrates good survival in the gastrointestinal tract, and it has been associated with a variety of probiotic activities and roles, including the reduction of fecal mutagenic enzymes, the production of bacteriocins and the stimulation of macrophages immunomodulation. The aim of the study was to evaluate the effects of a pool of L. gasseri strains isolated from the feces of breastfed infants added in the human milk of healthy women. The milk was both pasteurized and unpasteurized, to verify the cell cytotoxicity of macrophages and to quantify the production of immunologic mediators such as IL-4, IL-6, IFN-g, TNF-a, NO and oxygen intermediary compounds (H2O2). The administration of raw human milk and pasteurized human milk to infants is a regular, encouraged practice in units of intensive therapy (UITs) and our present investigation verified the beneficial effect of addition of a pool of L. gasseri to pasteurized human milk (PHML). Our results show that probiotic supplementation helped to maintain cell viability, reduced IL-6 and IFN-γ production and stimulated TNF-α, NO, H2O2, IL-4 production. Nevertheless, the results indicate that the addition of lactobacillus to human milk was not a determinant in the production of TNF-α. L. gasseri added to breast milk did not present a cytotoxic risk, and the addition of L. gasseri to pasteurized milk of human milk bank would benefit newborns that depend on milk banks for the colonization of more desirable microbiota.
Resumo:
The aim of this study was to investigate the rheological properties and antibacterial efficacy of chitosan/ alpha-hydroxy acids (lactic acid and glycolic acid) and cellulose polymers, both in hydrogels, in order to produce a formulation with improved activity against Propionibacterium acnes and Staphylococcus aureus, which can potentially be used in the treatment of acne. The rheological characterisation of the hydrogels was examined using continuous shear and viscoelastic creep. The antibacterial activities of formulations were performed by the well diffusion and broth microdilution. The hydrogels formulated with only chitosan showed pseudoplastic behavior while the chitosan hydrogels with cellulose polymers presented viscoelastic properties. The antibacterial activity was proportional to AHA and chitosan concentration. It was enhanced at low pH values and with high molecular weight chitosan and did not change with the incorporation of two cellulose polymers. The antibacterial mechanism of chitosan has currently been hypothesized as being related to surface interference. The results show that chitosan - based hydrogels containing AHA and cellulose polymers are viscoelastic,indicating good applicability onto the skin, and they present bacterial activity under various experimental conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The oxidized cassava starch is widely used in various industrial sectors, the major textile, paper and more recently by the food industry due to its characteristics, such as expansion property to baking. This study aimed to develop a modification of cassava starch by reaction with hydrogen peroxide and lactic acid, with two different types of drying, in the sun and in oven dried, in order to develop the expansion with increase of carboxyl groups and to evaluate differences between the types of drying and compare them with Expandex® starch and pre-gelatinized. The results indicated an increase in the rate of expansion of the modified starch dry in the sun, however the results of the content carboxylic groups haven't indicated the relationship with their rate expansion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sensorial and microbiological characteristics of a Brazilian fresh cheese samples with Bifidobacterium animalis subps. lactis as well as samples with this probiotic and polydextrose, a prebiotic ingredient, were evaluated. The addition of this microorganism was studied as: (1) lyophilized probiotic added to cheese curd and (2) by using milk previously fermented by this probiotic to produce the cheese. Cheese samples were microbiologically characterized after 0, 7, 14, 21 and 28 days of storage at a temperature of 4 °C. The microbiological analyses conducted were quantification of total lactic acid bacteria, mesophilic microorganisms, Bif. animalis subps. lactis, coliforms at 30 °C and 45 °C. Affective sensory test was conducted for two different cheese samples (with probiotic and with probiotic and prebiotic) as well as for control one week after manufacturing date. Cheese samples provided acceptable results for coliform counts at 30 °C and 45 °C in compliance with legislation. The cheese samples produced using milk fermented by probiotic showed counts of 107 -108 CFU/g after 28 days of storage, which assures functional property for this product to be claimed.
Resumo:
The aim of this work was to compare the efficiency of conventional antibiotics in relation to hop-based antimicrobials, in industrial-scale bioethanol production. The comparison was made by calculating the lactic acid bacteria population reduction in two consecutive fermentation cycles. To conduct the experiment, it was used five treatments (three conventional antibiotics: Kamoran WP, Corstan and Alcapen 1030, and two hop-based antimicrobials: BetaBio and IsoStab). The samples were collected in the fermentation vat. In order to quantify the initial lactic acid bacteria population, a sample was collected at the end of the fermentation process (wine) before the treatment with antibiotics or antimicrobials, and to determine the final population, another sample was collected at the end of the fermentation process (wine) after the treatment with antibiotics or antimicrobials. The experiment was completely randomized and the statistical analysis was performed through analysis of variance (ANOVA) for data processed using the equation y’ = . After the data transformation, the Levene's test was applied to verify data adherence to normal distribution, and the averages were compared through Tukey’s test at 5% probability. The results showed that the hop-based antimicrobials (IsoStab and BetaBio) can be used to substitute the conventional antibiotics (Kamoran, Alcapen and Corstan), since there was no statistical difference between the treatments.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.