460 resultados para Microalgal toxins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6 +/- 3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90 +/- 11%; cellobiose, 10 +/- 3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96 +/- 11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bucain is a three-finger toxin, structurally homologous to snake-venom muscarinic toxins, from the venom of the Malayan krait Bungarus candidus. These proteins have molecular masses of approximately 6000-8000 da and encompass the potent curaremimetic neurotoxins which confer lethality to Elapidae and Hydrophidae venoms. Bucain was crystallized in two crystal forms by the hanging-drop vapour-diffusion technique in 0.1 M sodium citrate pH 5.6, 15% PEG 4000 and 0.15 M ammonium acetate. Form I crystals belong to the monoclinic system space group C2, with unit-cell parameters a = 93.73, b = 49.02, c = 74.09 Angstrom, beta = 111.32degrees, and diffract to a nominal resolution of 1.61 Angstrom. Form II crystals also belong to the space group C2, with unit-cell parameters a = 165.04, b = 49.44, c = 127.60 Angstrom, beta = 125.55degrees, and diffract to a nominal resolution of 2.78 Angstrom. The self-rotation function indicates the presence of four and eight molecules in the crystallographic asymmetric unit of the form I and form II crystals, respectively. Attempts to solve these structures by molecular-replacement methods have not been successful and a heavy-atom derivative search has been initiated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snake venom (sv) C-type lectins encompass a group of hemorrhagic toxins that are capable of interfering with blood stasis. A very well-studied svC-type lectin is the heterodimeric toxin, convulxin (CVX), from the venom of South American rattlesnake Crotalus durissus terrificus. CVX is able to activate platelets and induce their aggregation by acting via p62/GPVI collagen receptor. By using polymerase chain reaction homology screening, we have cloned several cDNA precursors of CVX subunit homologs. One of them, named crotacetin (CTC) beta-subunit, predicts a polypeptide with a topology very similar to the tridimensional conformations of other subunits of CVX-like snake toxins, as determined by computational analysis. Using gel permeation and reverse-phase high-performance liquid chromatography, CTC was purified from C. durissus venoms. CTC can be isolated from the venom of several C. durissus subspecies, but its quantitative predominance is in the venom of C. durissus cascavella. Functional analysis indicates that CTC induces platelet aggregation, and, importantly, exhibits an antimicrobial activity against Gram-positive and -negative bacteria, comparable with CVX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated front the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C164I165M166, which characterize the metzincin superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four a-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single a-helix and several loops. The catalytic zinc ion is coordinated by the N-epsilon2 nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The venom proteome of Daboia russelli siamensis, a snake of medical importance in several Asian countries, was analysed by 2-D electrophoresis, subsequent MS/MS and enzymatic assays. The proteome comprises toxins from six protein families: serine proteinases, metalloproteinases, phospholipases A(2), L-amino acid oxidases, vascular endothelial growth factors and C-type lectin-like proteins. The venom toxin composition correlates with the clinical manifestation of the Russell's viper bite and explains pathological effects of the venom such as coagulopathy, oedema, hypotensive, necrotic and tissue damaging effects. The vast majority of toxins are potentially involved in coagulopathy and neurotoxic effects. The predominant venom components are proteinases capable of activating blood coagulation factors and promoting a rapid clotting of the blood, and neurotoxic phospholipase A(2)s. The analysis of the venom protein composition provides a catalogue of secreted toxins. The proteome of D. r. siamensis exhibits a lower level of toxin diversity than the proteomes of other viperid snakes. In comparison to the venoms of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis, the venom from D. r. siamensis showed quantitative differences in the proteolytic, phospholipase A2, L-amino acid oxidase and alkaline phosphatase activities. (c) 2009 Published by Elsevier B.V.