281 resultados para Lead zirconate titanate
Resumo:
The effects of maternal exposure to lead (Pb) during the perinatal ( 1% and 0.1% Pb) periods of sexual brain differentiation were studied in adult male offspring. Maternal Pb levels were measured after treatment. Behavioral (open field and sexual behavior), physical (sexual maturation, body and organ weights), and biochemical (testosterone levels and hypothalamic monoamine and respective metabolite levels) data were assessed in perinatally exposed offspring. The effects of gonadrotopin-releasing hormone (GnRH) administration to pups at birth on puberty and sexual behavior were also investigated in offspring postnatally exposed to the metal. Results showed that perinatal administration of the two Pb concentrations did not modify maternal weight gain; 1% Pb exposure reduced offspring body weight during the 7 days of treatment while no changes were observed after 0.1% Pb exposure; neither ph concentration altered offspring sexual maturation; the higher Pb concentration improved sexual behavior while the 0.1% concentration reduced it; exposure to 0.1% Pb caused decrease in testis weight, an increase in seminal vesicle weight and no changes in plasma testosterone levels; hypothalamic VMA levels were increased compared to the control group; GnRH administration reversed the effects of 0.1% Ph administration on male sexual behavior. These results show that perinatal exposure to ph had a dose-dependent effect on the sexual behavior of rats and that a decrease in GnRH source in the offspring was probably involved in the reduction of their sexual performance. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
Pure barium strontium titanate powder, with Ba/Sr ratio of 80/20 was prepared by the polymeric precursor method (also called Pechini process). The powder was obtained after a calcination at 800 degreesC for 8 h and characterized by XRD, IR, BET and SEM. The requirements to avoid barium carbonate as a secondary phase are presented and discussed in detail. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effect of lead excess on the pyrochlore-type formation in Pb(Mg1/3Nb2/3)O-3 (PMN) powders has been investigated. The polymeric precursor method was used in the synthesis of the columbite in association to the partial oxalate method to synthesize the PMN powder samples. Structure refinement of the columbite precursor and PMN powders was carried out using the Rietveld method. The quantitative phase analysis showed that the amount of perovskite phase is not affected by PbO excess, but a great excess drives the pyrochlore-type formation so that 3 wt.% of PbO causes the predominance of Mg-containing pyrochlore phase. Using the refined data obtained from the Rietveld refinement, the compositional fluctuation in the perovskite phase was calculated from Nb/Mg ratio values and Pb occupation factor. Mg inclusion occurs concomitant with Ph one into PMN perovskite phase and this effect is directed by PbO excess during powder synthesis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.
Resumo:
Thin films of barium and strontium titanate (BST), synthesized by the polymeric precursor solution and spin coated on [Pt (140nm)/Ti (10 nM)/SiO2(1000 nm)/Si] substrates were found to be photoluminescent at room temperature when heat treated below 973 K, i.e. before their crystallization. First principles quantum mechanical techniques, based on density functional theory (DFT) were employed to study the electronic structure of two periodic models: one is standing for the crystalline BST thin film and the other one for the structurally disordered thin film. The aim is to compare the photoluminescence (PL) spectra of the crystalline and disordered thin films with their UV-vis spectra and with their computed electronic structures. The calculations show that new localized states are created inside the band gap of the crystalline model, as predicted by the UV-vis spectra. The study of the charge repartition in the structure before and after deformation of the periodic model shows that a charge gradient appears among the titanate clusters. This charge gradient, together with the new localized levels, gives favorable conditions for the trapping of holes and electrons in the structure, and thus to a radiative recombination process. Our models are not only consistent with the experimental data, they also allow to explain the relations between structural disorder and photoluminescence at room temperature. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Barium titanate ceramics were prepared through mechanochemical synthesis starting from fresh prepared barium oxide and titanium oxide in rutile form. Mixture of oxides was milled in zirconia oxide jar in the planetary ball-mill during 30, 60, 120 and 240 min. Extended time of milling directed to formation of higher amount of barium titanate perovskite phase. Barium titanate with good crystallinity was formed after 240 min. Sintering without pre-calcinations step was performed at 1330 degrees C for 2 hours with heating rate of 10 degrees C/min. The XRD, DSC, IR and TEM analyses were performed. Electric and ferroelectric properties were studied. Very well defined hysteresis loop was obtained.
Resumo:
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Samarium doped PbTiO3 (PT:Sm) and pure PbTiO3 (PT) powders were obtained by polymeric precursor method. These powders were characterized by X-ray diffraction (XRD) and theoretical calculations using the CRYSTAL98 program. The effect of the samarium atom is taken into account only indirectly. The experimental models were compared with the cubic (ideal) and tetragonal theoretical models. The structure deformations existent in the experimental compounds were analyzed from the tiny structural differences that lead to perturbations in the crystal orbital splittings. This paper proposes an efficient alternative methodology for defining structural distortions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Barium titanate (BT) thick films were prepared from mechanically activated powders based on BaCO(3) and TiO(2). After homogenization and milling in a high-energy vibro mill, the powders were calcined at 700 degreesC for 2 h by slow heating and cooling rates. A thick film paste was prepared by mixing BT fine powders with small amount of low temperature sintering aid and organic binder. The thick films were screen-printed on alumina substrates electroded with Ag-Pd. The BT films were sintered at 850 degreesC for 1 h. The thickness was 25-75 mum depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate were investigated by SEM Results of dielectric property measurements are also reported. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Strontium titanate thin films were prepared by spray pyrolysis technique. Deposition parameters, such as solution concentration, time and temperature of deposition, and flow rate of carrier gas were optimized to obtain dense films without cracks. Films with different thicknesses were prepared through the control of deposition time. Prepared thin films were homogeneous, well crystallized, with uniform grain size. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ferroelectric PbTiO3 thin films were successfully prepared on a Pt(111)Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. This method allows low temperature (500 degrees C) synthesis and high electrical properties. The multilayer PbTiO3 thin films were granular in structure with a grain size of approximately 110-120 nm. A 380-nm-thick film was obtained by carrying out four cycles of the spin-coating/heating process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (=3.4 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 570 and 0.016. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behavior. The remanent polarization and coercive field for the films deposited were 13.62 mu C/cm(2) and 121.43 kV/cm, respectively. The high electrical property values are attributed to the excellent microstrutural quality and chemical homogeneity of thin films obtained by the polymeric precursor method. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
Calcium copper titanate (CaCu3Ti4O12) ceramic varistors were prepared by solid-state method. The samples were several times heat treated in vacuum and the evolution of electrical characteristics were monitored by current density versus electric field measurements and impedance spectroscopy. Repeated heat treatments in vacuum (900 degrees C for 1 h, 0.01 Torr) lead to a desorption of oxygen adsorbed at the grain boundaries and consequently to a degradation of the varistor properties. During further successive heat treatments some oxygen from the grain interior moves to the grain boundary thereby partially restoring the varistor properties. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Strontium-modified lead titanate (PST) thin films with composition Pb1-xSrxTiO3 (0.10 < x &LE; 0.60) were grown on Pt/Ti/SiO2/Si substrates using a soft chemical process. The crystallization of the PST thin films was achieved by heat treatment at 600&DEG;C. The structural and microstructural modifications in the films were studied using X-ray diffraction (XRD) and atomic force microscopy, respectively. The XRD study shows that the lattice parameters of polycrystalline PST thin films calculated from X-ray data indicate a decrease in lattice tetragonality with the increase in strontium content in these films. This indicates a gradual change from tetragonal to cubic structure. By atomic force microscopy analysis, the average grain size of the thin films was systematically reduced with the increase in Sr content. The dielectric property of the thin films was found to be strongly dependent on the Sr concentration. With 60 at.% Sr content, a ferroelectric to paraelectric phase transition was observed at room temperature.
Resumo:
The molar single ion activity coefficients associated with hydrogen, copper(II), cadmium(II) and lead(II) ions were determined at 25 degrees C and ionic strengths between 0.100 and 3.00 M (NaClO4), whereas for acetate the ionic strengths were fixed between 0.300 and 2.00 M, held with the same inert electrolyte. The investigation was carried out potentiometrically by using proton-sensitive glass, copper, cadmium and lead ion-selective electrodes and a second-class Hg\Hg-2(CH3COO)(2) electrode. It was found that the activity coefficients of these ions (y(i)) can be assessed through the following empirical equations:log y(H) = -0.542I(0.5) + 0.451I; log y(Cu) = -1.249I(0.5) + 0.912I; log y(Cd) = -0.829I(0.5) + 0.448I(1.5);log y(Pb) = -0.404I(0.5) + 0.117I(2); and log y(Ac) = 0.0370I .