259 resultados para GLUON CONDENSATE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A one parameter model of a confined-gluon propagator has been formulated by Frank and Roberts recently, which has a great success explaining π - and p - meson observables. We show, computing few chiral parameters, that a small variation of this model considering an infrared finite gluon propagator with a dynamically generated gluon mass, can also fit data related to the chiral symmetry breaking. This allows a direct interpretation for the unique parameter involved in the model as the gluon mass scale. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Bose-Einstein condensation in an ideal (i.e. interactionless) boson gas can be studied analytically, at university-level statistical and solid state physics, in any positive dimensionality (d > 0) for identical bosons with any positive-exponent (s > 0) energy-momentum (i.e. dispersion) relation. Explicit formulae with arbitrary dls are discussed for: the critical temperature (non-zero only if d/s > 1); the condensate fraction; the internal energy; and the constant-volume specific heat (found to possess a jump discontinuity only if d/s > 2) Classical results are recovered at sufficiently high temperatures. Applications to ordinary' Bose-Einstein condensation, as well as to photons, phonons, ferro-and antiferromagnetic magnons, and (very specially) to Cooper pairs in superconductivity, are mentioned.
Resumo:
Both the parity-breaking and parity-invariant parts of the effective action for the gauge field in QED 3 with massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular configuration of the background gauge field, namely a constant magnetic field and a time-dependent time component of the background gauge field. Our results allow us to compute exactly physically interesting quantities such as the induced charge density and fermion condensate whose dependence on the temperature, fermion mass and gauge field is discussed. ©1999 The American Physical Society.
Resumo:
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan β, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. ©1999 The American Physical Society.
Resumo:
We discuss perturbative and non-perturbative strong-interaction effects in the pair production of stop squarks (t̃1) at e+e- colliders. Events with an additional hard gluon allow to detect or exclude t̃1t̃*1 production even in scenarios with very small mass splitting between ti and an invisible lightest supersymmetric particle (LSP). Such events can also help to establish that t̃1 transforms as a triplet under SU(3)C. We also carefully study non-perturbative t̃1 fragmentation, which is currently not well understood: not only is the t̃1 fragmentation function not known very well, but also there are ambiguities in the algorithm employed to model fragmentation. We present numerical results both for CERN LEP-183 and for a proposed future e+e- collider operating at center-of-mass energy s1/2 = 500 GeV.
Resumo:
We discuss effects of fragmentation and hard gluon radiation on the signal for the pair production of the lighter scalar top eigenstate t̃1 at e+e- colliders. The main emphasis is on scenarios with small stop-LSP mass splitting, where strong interaction effects can considerably modify kinematical properties of the final state.
Resumo:
We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.
Resumo:
The Gross-Pitaevskii equation for Bose-Einstein condensation (BEC) in two space dimensions under the action of a harmonic oscillator trap potential for bosonic atoms with attractive and repulsive interparticle interactions was numerically studied by using time-dependent and time-independent approaches. In both cases, numerical difficulty appeared for large nonlinearity. Nonetheless, the solution of the time-dependent approach exhibited intrinsic oscillation with time iteration which is independent of space and time steps used in discretization.
Resumo:
The high parton density effects are strongly dependent of the spatial gluon distribution within the proton, with radius R, which cannot be derived from perturbative QCD. In this paper we assume that the unitarity corrections are present in the HERA kinematical region and constrain the value of R using the data for the proton structure function and its slope. We obtain that the gluons are not distributed uniformly in the whole proton disc, but behave as concentrated in smaller regions. (C) 2000 Elsevier Science B.V.
Resumo:
We develop a relativistic quark model for pion structure, which incorporates the nontrivial structure of the vacuum of quantum chromodynamics as modelled by instantons. Pions are bound states of quarks and the strong quark-pion vertex is determined from an instanton induced effective Lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark mass, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculation of the pion form factor by means of the isovector nonforward parton distributions and find agreement with the experimental data. © 2000 Elsevier Science B.V.
Resumo:
We determine the critical coupling constant above which dynamical chiral symmetry breaking occurs in a class of QCD motivated models where the gluon propagator has an enhanced infrared behavior. Using methods of bifurcation theory we find that the critical value of the coupling constant is always smaller than the one obtained for QCD. ©2000 The American Physical Society.
Resumo:
The leading-twist valence-quark distribution function in the pion is obtained at a low normalization scale of an order of the inverse average size of an instanton pc. The momentum dependent quark mass and the quark-pion vertex are constructed in the framework of the instanton liquid model, using a gauge invariant approach. The parameters of instanton vacuum, the effective instanton radius and quark mass, are related to the vacuum expectation values of the lowest dimension quark-gluon operators and to the pion low energy observables. An analytic expression for the quark distribution function in the pion for a general vertex function is derived. The results are QCD evolved to higher momentum-transfer values, and reasonable agreement with phenomenological analyses of the data on parton distributions for the pion is found. ©2000 The American Physical Society.
Resumo:
Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.