266 resultados para Automóveis elétricos
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The relationship between the microstructure and the magnetic properties of soft magnetic materials, have been studied by different researchers who seek to employ electrical systems, increasing their life span and reduce their energy consumption. Following this same line the Brazilian Synchrotron Light Laboratory developed a new synchrotron light source, the Sirius, where magnetic materials with high magnetic permeability values are being studied for use in accelerator dipoles. The low carbon steel is a ferromagnetic material that has a great relationship between cost and magnetic permeability. Aiming to raise the values of permeability of the material, heat treatments were done and evaluated the magnetic properties, microstructure and mechanical properties to correlate them. It was noted that the thermal annealing were the most effective, and the annealing performed with a small time threshold, which only phenomenon observed was the primary recrystallisation, was the most elevated values of magnetic permeability of the material, due to the average grain size ideal achieved. The heat treatments do not guide the magnetic domains of the material and not influence the mechanical properties of the material due to lack of carbon in the microstructure. The annealing treatments were shown to be an alternative to raising the values of the magnetic permeability of the material and facilitate the implementation of ultra low carbon steel in the dipoles of Sirius
Resumo:
Overcurrents may endanger the whole electrical system and living beings, they are the result of short circuits and failures that can occur in electrical systems, no matter how well designed they are. Therefore it is important to predict these failures with analysis of electrical systems to make it possible to design appropriate protections, to ensure that those intervene properly and avoid technical and mainly human losses. However there is no standard for calculation of the short circuit currents, the main authors of the national literature about the subject suggest various methods, knowing the particularities among them provides quick and easy choice and proper application of them. To do so, a base case from an electrical system that presents a short circuit is chosen, which will be analyzed using the methods presented
Resumo:
The present work develops a model to simulate the dynamics of a quadcopter being controlled by a PD fuzzy controller. Initially is presented a brief history of quadcopters an introduction to fuzzy logic and fuzzy control systems. Afterwards is presented an overview of the quadcopter dynamics and the mathematical modelling development applying Newton-Euler method. Then the modelling are implemented in a Simulink model in addition to a PD fuzzy controller. A prototype proposition is made, by describing each necessary component to build up a quadcopter. In the end the results from the simulators are discussed and compared due to the discrepancy between the model using ideal sensor and the model using non-ideal sensors
Resumo:
Smart grids are the focus of major study today because of the necessity of modernization in electrical systems and reduction of greenhouse gas emissions that increases global warming. Reaching the best deployment method, you must first of all know the current electrical system and how to use them for the benefit of this new technology. Preparing the action plan we should be aware of the main points of smart grids in each step of the electricity system - generation, transmission and distribution. Analyzed these topics, this work will focus on the first step in the implementation of the smart grids: the smart meters, tool which is already being implemented in Brazil. The main characteristics and applications of these devices, as well as their communication structure with the core distributors will be showed during the paper. Finally, we present a case study which will be discussed and analyzed based in the results obtained with the implementation of smart meters in the city of Vancouver, Canada, where we have a considerable savings already in the first year, with fully paying the initial investment and still have a profit
Resumo:
During the twentieth century the inorganic electronics was largely developed being present in various industrial equipment or household use. However, at the end of that century were verified electronic properties in organic compounds, giving rise to the field of organic electronics. Since then, the physical properties of elementary devices such as diodes and organic transistors have been studied. In this work was studied the properties of diode devices fabricated with a semiconductor polymer, the poly-o-methoxyaniline (POMA). Devices containing electrodes of Au and Al were fabricated with semiconductor polymer of different doping levels. We found that the rectifying behavior for the heterojunctions metal/polimer are reached only for high doping level (with conductivity greater than 1,77. 10-9 S / cm), which gives the devices characteristic of a Schottky diode. The rectifying behavior was observed for electric fields of low magnitude, below the operating field (~ 600 V/cm), while for electric field greater than 600 V/cm the a linear behavior I vs.V was obtained. We determined that this Ohmic behavior arises from the charge transport over the volume of the semiconductor material after the lowering of the metal/semiconductor barrier. In devices with weakly doped semiconductor, the electrical resistance of the volume becomes high and the process of charge transportation is dominated by the volume, for any intensity of the applied electric field
Resumo:
In wood processing industries, which use electrical equipment in the production process, in most cases these are badly scaled or operate under inadequate conditions, resulting directly in industrial energy efficiency, which proves important because besides having technological innovation, also with practices and policies, aims to decrease power consumption. So in a wiring project should take into account the variables that influence energy efficiency. Thus this work has been reviewed and subsequently calculated some of these variables, such as active power, power factor and demand for the entire industry (global) and also for specific equipment, the chipper. The network analysis was performed in a wood processing industry in the city of Taquarivaí - SP, and evaluated these variables with a network analyzer and also by analysis on energy bills, which were found in both analysis levels below those found in literature. These factors are due to poor design, improper use, storage of equipment or even by characteristic of the production process, ie, the equipment running on empty because of the volatility of production
Resumo:
This paper aims to show practical and effectiveexperiencesfor lessons Industrial Automation Laboratory taught inundergraduate degreein ElectricalEngineering from the University Júlio MesquitaFilho - UNESP, Guaratinguetá. Experiments carriedsimulatecontrol and drive systems of electric three phase induction motors (MIT)widely usedinindustries. The experiments simulate a manufacturing environment where there isa need to control the activation and continuous operation ofelectricmotors. Seven experimentsthat simulatethe firing of electrical motors through a controlsystem, a driver along with asimulator loads coupled to the electric motor was developed. Experiments usinga Programmable Logic Controller (PLC) as acontroller,an inverter frequencyasdriver, and MagneticBrake, as simulatorengine loads . The experiments were divided accordingto the speed reference signal used fordrivingand operating the electric motor: digital and analog. The first five experiments performing the drive control and operation of the electric motor via digital signals. The sixth and seventh experiments using an analog signal as a reference speed for the electric motor
Resumo:
This work aims to make the closed loop control of a three phase induction motor, through the integration of the following equipment: a frequency inverter, the actuator system; a programmable logic controller (PLC), the controller; an encoder, the velocity sensor, used as a feedback monitoring the control variable and the three-phase induction motor, the plant to be controlled. The control is performed using a Proportional - Integrative - Derivative (PID) approach. The PLC has a help instruction, which performs the auto adjustment of the controller, that instruction is used and confronted with other adjustment methods. There are several types of methods adjustments to the PID controllers, where the empirical methods are addressed in this work. The system is deployed at the Interface and Electro Electronic Control laboratory in the Universidade Estadual Paulista Júlio Mesquita Filho, Guaratinguetá, São Paulo, then, in the future, this work becomes an experiment to be conducted in the classroom, allowing undergraduate students to develop a greater affinity to the programs used by the PLC as well as studies of undergraduate and graduate works with the help of assembly made
Resumo:
The increase in energy consumption in the world has caused the electrical systems becoming ever larger and more complex. Because of that becomes necessary to use special tools to efficiently manage the equipment present in these systems. Nowadays a tool very used is the remote monitoring of assets which works collecting signals using sensors processing these signals and make them available to the system user. So the user can use informations that may assist him efficiently in making decisions when doing a maintenance. The system is technically efficient since it improves the measurement process and enables the asset management of a substation by using advanced technology for that and economically viable especially in cases where the user is subject to monetary loss due an interruption of power supply
Resumo:
The globalization is each day more aggressive and demanding even more that new products be manufactured and therefore be delivered to many places in the globe. Thus, an efficient and vigorous transport system is demanded. There are many ways to transport a product, but one of the most used in the world is shipping. A marine vessel presents diversified structures of size and functions. In order to this system has more efficiency, alternatives should be used to obtain important energy savings. Usually, a vessel present a propulsion system purely mechanical, therefore the use of alternatives propulsions, like diesel-electric, is increasing. This graduation work has as main focus demonstrate the functioning of a diesel-electric propulsion system, since the main characteristics of each component of the system, likewise the analysis and electrical calculation, showing the advantages in relation to the conventional diesel propulsion system