265 resultados para single phase system
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results. ©2008 IEEE.
Resumo:
This paper presents possible selective current compensation strategies based on the Conservative Power Theory (CPT). This recently proposed theory, introduces the concept of complex power conservation under non-sinusoidal conditions. Moreover, the related current decompositions results in several current terms, which are associated with a specific physical phenomena (power absorption P, energy storage Q, voltage and current distortion D). Such current components are used in this work for the definition of different current compensators, which can be selective in terms of minimizing particular disturbing effects. The choice of one or other current component for compensation directly affects the sizing and cost of active and/or passive devices and it will be demonstrated that it can be done to attend predefined limits for harmonic distortion, unbalances and/or power factor. Single-phase compensation strategies will be discussed by means of the CPT and simulation results will demonstrate their performance. © 2009 IEEE.
Resumo:
Reliability is a key aspect in power system design and planning. Maintaining a reliable power system is a very important issue for their design and operation. Under the new competitive framework of the electricity sector, power systems find ever more and more strained to operate near their limits. Under this new scenario, it is crucial for the system operator to use tools that facilitate an energy dispatch that minimizes possible power cuts. This paper presents a mathematical model to calculate an energy dispatch that considers security constraints (single contingencies in transmission lines and transformers). The model involves pool markets and fixed bilateral contracts. Traditional methodologies that include security constraints are usually based in multistage dispatch processes. In this case, we propose a single-stage model that avoids the economic inefficiencies which result when conventional multi-stage dispatch approaches are applied. The proposed model includes an AC representation of the transport system and allows calculating the cost overruns incurred in due to reliability restrictions. We found that complying with fixed bilateral contracts, when they go above certain levels, might lead to congestion problems in transmission lines.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
This paper describes the design and development of a high input power-factor (HPF) AC to AC converter for naval applications using Permanent Magnet Generator (PMG). The proposed converter comprises an isolated three-phase uncontrolled multipulse rectification stage directly connected to a single-phase inverter stage, without the use of DC to DC intermediary stage, resulting in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and input currents with low total harmonic distortion (THD). The output voltage of the PMG varies from 260V rms (220 Hz) to 380V rms (360 Hz), depending on load conditions. The output single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120V rms, 60 Hz output. Measured total harmonic distortion for the AC output voltage represents less than 2%, at 3.6kW nominal linear load. © 2010 IEEE.
Resumo:
A Fault Current Limiter (FCL) based on high temperature superconducting elements with four tapes in parallel were designed and tested in 220 V line for a fault current peak between 1 kA to 4 kA. The elements employed second generation (2G) HTS tapes of YBCO coated conductor with stainless steel reinforcement. The tapes were electrically connected in parallel with effective length of 0.4 m per element (16 elements connected in series) constituting a single-phase unit. The FCL performance was evaluated through over-current tests and its recovery characteristics under load current were analyzed using optimized value of the shunt protection. The projected limiting ratio achieved a factor higher than 4 during fault of 5 cycles without degradation. Construction details and further test results will be shown in the paper. © 2010 IOP Publishing Ltd.
Resumo:
This paper proposes and describes a high power factor AC-AC converter for naval applications using Permanent Magnet Generator (PMG). The three-phase output voltages of the PMG vary from 260 Vrms (220 Hz) to 380 Vrms (360 Hz), depending on load conditions. The proposed converter consists of a Y-/ΔY power transformer, which provides electrical isolation between the PMG and remaining stages, and a twelve-pulse uncontrolled rectifier stage directly connected to a single-phase inverter stage, without the use of an intermediary DC-DC topology. This proposal results in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and low total harmonic distortion for the input currents of the converter. The single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120 Vrms, 60 Hz output. The control philosophy, implemented in a digital signal processor (DSP) which also contains protection routines, alows series connections between two identical converters, achieving 240 Vrms, 60 Hz total output voltage. Measured total harmonic distortion for the AC output voltage is lower than 2% and the input power factor is 0.93 at 3.6kW nominal load. © 2010 IEEE.
Resumo:
This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional current-source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the Inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, and main simulation and experimental results in order to demonstrate the feasibility of the proposal. © 2010 IEEE.
Resumo:
This paper presents new inverter topologies based on the integration of a DC to DC Zeta or Cuk converter with a voltage source inverter (VSI). The proposed integration procedure aims to reduce the amount of components, meaning lower volume, weight and costs. In this context, new families of single-phase and three-phase integrated inverters are also presented. Therefore, considering the novelty for Zeta and Cuk integrated inverters structures, the proposed single-phase and three-phase inverters versions are analyzed for grid-tied and stand-alone applications. Furthermore, in order to demonstrate the feasibility of the proposal, the main simulation and experimental results are presented. © 2011 IEEE.
Resumo:
Purpose: Bioactive glass and bioactive glass-ceramic cone implants were placed in the rabbit eviscerated socket to assess their biocompatibility. Methods: Fifty-one Norfolk albino rabbits underwent evisceration of the right eye followed by implantation of cones made from Bioglass® 45S5 (control group) and two types of bioactive glass-ceramic (Biosilicate®), a single- and a two-phase bioactive glass-ceramic implants into the scleral cavity. Postoperative reactions, animal behavior and socket conditions were monitored daily. Clinical exam, biochemical evaluations, and orbit computed tomographic scan were done at 7, 90, and 180 days post-procedure. After that, the animals were euthanized, and the orbital content was removed and prepared to light microscopy with morphometric evaluation and scanning electron microscopy examination. Statistical analysis was done by parametric and non-parametric analysis of variance, complemented by Dunn's and Tukey's tests (p<0.05). Results: All animals did not develop systemic toxicity throughout the experimental period and also did not have orbit infection, implant migration or extrusion. Morphological analysis demonstrated pseudocapsule around all implants. Bioglass® and single-phase Biosilicate® implants induced less inflammation and pseudocapsule formation than two-phase Biosilicate® cones. Seven days post-procedure, the inflammatory reaction was intense and gradually decreased throughout the experiment. Tissue reaction was least intense in animals receiving Bioglass® implants. Conclusions: We observe discrete differences among the studied materials, with best responses obtained with use of Bioglass® 45S5 and single-phase Biosilicate®. The authors agree these implants might be useful in the management of the anophthalmic socket. © 2012 Informa Healthcare USA, Inc.
Resumo:
Two-stage isolated converters for photovoltaic (PV) applications commonly employ a high-frequency transformer on the DC-DC side, submitting the DC-AC inverter switches to high voltages and forcing the use of IGBTs instead of low-voltage and low-loss MOSFETs. This paper shows the modeling, control and simulation of a single-phase full-bridge inverter with high-frequency transformer (HFT) that can be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC inverter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the PResonant current control regulator. A high-frequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. © 2012 IEEE.
Resumo:
The objective of this paper is to show a methodology to estimate transmission line parameters. The method is applied in a single-phase transmission line using the method of least squares. In this method the longitudinal and transversal parameters of the line are obtained as a function of a set of measurements of currents and voltages (as well as their derivatives with respect to time) at the terminals of the line during the occurrence of a short-circuit phase-ground near the load. The method is based on the assumption that a transmission line can be represented by a single circuit π. The results show that the precision of the method depends on the length of the line, where it has a better performance for short lines and medium length. © 2012 IEEE.
Resumo:
Background: The time synchronization is a very important ability for the acquisition and performance of motor skills that generate the need to adapt the actions of body segments to external events of the environment that are changing their position in space. Down Syndrome (DS) individuals may present some deficits to perform tasks with synchronization demand. We aimed to investigate the performance of individuals with DS in a simple Coincident Timing task. Method. 32 individuals were divided into 2 groups: the Down syndrome group (DSG) comprised of 16 individuals with average age of 20 (+/- 5 years old), and a control group (CG) comprised of 16 individuals of the same age. All individuals performed the Simple Timing (ST) task and their performance was measured in milliseconds. The study was conducted in a single phase with the execution of 20 consecutive trials for each participant. Results: There was a significant difference in the intergroup analysis for the accuracy adjustment - Absolute Error (Z = 3.656, p = 0.001); and for the performance consistence - Variable Error (Z = 2.939, p = 0.003). Conclusion: DS individuals have more difficulty in integrating the motor action to an external stimulus and they also present more inconsistence in performance. Both groups presented the same tendency to delay their motor responses. © 2013 Torriani-Pasin et al.; licensee BioMed Central Ltd.
Resumo:
In this work La1-xCaxCoO3 (x = 0-0.4) pigments were synthesized by the polymeric precursor method with heat treatments at 700, 800 and 900 C for 4 h. The powders were characterized by colorimetry, UV-vis spectroscopy and powder X-ray diffraction (XRD). The X-ray diffraction patterns showed the presence of a single phase perovskite, changing its structure from rhombohedral to cubic, when calcium was added to the lattice. All of the pigments had a black colour with a strong absorption over the whole of the visible spectrum as a consequence of the different oxidation states of cobalt and the high short-range disorder. The substitution of Ca2+ for La3+ did not influence the pigment colour but decreased its final cost. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
A simple hybrid synthesis processing method was developed to synthesize γ-MnO2 nanocrystalline particles. The polyol method was modified by the addition of nitric acid in order to allow the synthesizing of single-phase Mn3O4 in a large scale. In the sequence, the acid digestion technique was used to transform Mn3O4 into γ-MnO2. Structural and morphological characterization was carried out by X-ray diffractometry, Infrared and Raman spectroscopy, thermogravimetric analysis, nitrogen adsorption isotherm, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The synthesized material exhibits a specific capacitance of 125.1 F g-1 at a mass loading of 0.98 mg cm-2. The relation between structural features and electrochemical activity is discussed by comparing the synthesized material with commercial electrolytic manganese dioxide. © 2013 Springer-Verlag Berlin Heidelberg.