435 resultados para IMMERSION
Resumo:
Enamel white spot subsurface lesions compromise esthetics and precede cavitation; therefore, they must be halted. The aim of this study was to evaluate the effect of a caries infiltration technique and fluoride therapy on the microhardness of enamel carious lesions. Subsurface carious lesions were produced in 60 bovine specimens with polished enamel surfaces. The specimens were divided into four groups (n=15), according to the treatment used: CON, control immersion in artificial saliva; DF, daily 0.05% fluoride solution; WF, weekly 2% fluoride gel; and IC, resin infiltration (Icon). The specimens were kept in artificial saliva and evaluated for microhardness at five points: baseline, after caries production, after four and eight weeks of treatment, and a final evaluation after being submitted to a new acid challenge. The repeated-measures analysis of variance showed significant differences according to the type of treatment (TREAT; p=0.001) and time of evaluation (EV; p=0.001). The results of the Tukey test were TREAT: CON = 45.18 (+/- 29.17)a, DF = 107.75 (+/- 67.38)b, WF = 83.25 (+/- 51.17)c, and IC = 160.83 (+/- 91.11)d. Analysis of correlation between the TREAT and EV factors showed no significant differences for DF (138.63 +/- 38.94) and IC (160.99 +/- 46.13) after the new acid challenge. The microhardness results in decreasing order after eight weeks were IC > DF > WF > CON. It was concluded that the microhardness of carious lesions increased with the infiltration of resin, while the final microhardness after a new acid challenge was similar for DF and IC.
Resumo:
OBJETIVO: Avaliar se fontes de luz aumentam a eficácia do peróxido de hidrogênio na técnica de clareamento profissional. METODOLOGIA: Foram empregados 60 dentes incisivos bovinos, com dimensões coronárias e radiculares padronizadas a partir do limite amelo-cementário, sendo descartada a porção lingual. Os corpos-de-prova (cp) foram limpos em ultra-som por 20 min e a dentina condicionada com H3PO4 a 38% por 15 s, sendo os (cp) imersos em solução de café solúvel a 25% por duas semanas. A dentina foi impermeabilizada com esmalte e os (cp) divididos em 5 grupos, sendo a cor inicial mensurada através do espectofotômetro-EasyShade (VITA). Todos os (cp) receberam três aplicações por 10 min do gel clareador Opalescence Xtra-Boost (Ultradent) conforme segue: Grupo 1 - controle, não recebeu fotoativação, Grupo 2 - ativado com luz halôgena, Grupo 3 - ativado com LED azul/LASER, Grupo 4 - ativado com LED verde/LASER e Grupo 5 - ativado com LED vermelho. Após o clareamento foi mensurada a variação de cor E, a*, b*e L* e as referentes à escala de cor Vita Clássico. Os dados foram submetidos à análise de variância, teste de Tukey e de Dunn (α=5%). RESULTADOS: A diferença geral da cor foi reduzida quando se empregou LED Azul e Luz Halógena, sendo que o desempenho do peróxido de hidrogênio a 38% foi intensificado dependendo da fonte de luz utilizada. A avaliação quantitativa de cor, obtida por espectrofotômetro e pela escala de cor Vita Clássico, foram coincidentes. CONCLUSÃO: O tipo de fonte de luz empregada interfere na eficácia do agente clareador.
Resumo:
This study evaluated the influence of surfactants on the effectiveness of 35% hydrogen peroxide (HP) and 10% carbamide peroxide (CP) bleaching gels. One hundred and forty bovine teeth were used, which were stained by immersion in a coffee, red wine, and tobacco mixture for 7 days. At the end of this process, the color measurement at baseline was taken with the Vita Easyshade spectrophotometer. The teeth were divided into seven groups: (a) negative control (NC), (b) positive control for HP (PC-35), (c) HP + Tween 20 (T20-35), (d) HP + laurel sodium sulfate (LSS-35), (e) positive control for CP (PC-10), (f) CP + Tween 20 (T20-10), and (g) CP + laurel sodium sulfate (LSS-10). Group NC was kept in artificial saliva for 21 days. Groups PC-35, T20-35, and LSS 35 received three applications of bleaching gel for 10 min; the process was repeated after 7 days. Groups PC-10, T20-10, and LSS-10 received the gel for 8 h per day for 14 days. After the bleaching process, the final color was measured. The analysis of variance and Tukey tests showed statistically significant differences for the parameters of a dagger L, a dagger b, and a dagger E of the HP gels with surfactant and positive control group (PC-35). Within the limits of this in vitro study, the addition of surfactants to HP bleaching gel increased the bleaching effectiveness.
Resumo:
Let f : M --> N be a continuous map between two closed n-manifolds such that f(*): H-*(M, Z(2)) --> H-* (N, Z(2)) is an isomorphism. Suppose that M immerses in Rn+k for 5 less than or equal to n < 2k. Then N also immerses in Rn+k. We use techniques of normal bordism theory to prove this result and we show that for a large family of spaces we can replace the homolog condition by the corresponding one in homotopy. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Let us consider M a closed smooth connected m-manifold, N a smooth ( 2m-2)-manifold and f: M -> N a continuous map, with m equivalent to 1( 4). We prove that if f*: H(1)(M; Z(2)) -> H(1)(f(M); Z(2)) is injective, then f is homotopic to an immersion. Also we give conditions to a map between manifolds of codimension one to be homotopic to an immersion. This work complements some results of Biasi et al. (Manu. Math. 104, 97-110, 2001; Koschorke in The singularity method and immersions of m-manifolds into manifolds of dimensions 2m-2, 2m-3 and 2m-4. Lecture Notes in Mathematics, vol. 1350. Springer, Heidelberg, 1988; Li and Li in Math. Proc. Camb. Phil. Soc. 112, 281-285, 1992).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Comparative wear and corrosion properties of Cr3C2-NiCr (CC-TS) (a high-velocity oxyfuel [HVOF]) and hard chromium (HC) coating's obtained on a steel substrate have been studied. The structural characterization was done before and after measurements by optical microscopy, scanning electron microscopy, and scanning white light interferometry. Wear and corrosion properties were evaluated by ball on disk (ASTM G99-90), rubber wheel (ASTM G65-91), and electrochemical measurements of open circuit and polarization curves. The best corrosion and wear resistance was for the CC-TS obtained by HVOF. The open-circuit potential values measured for both samples after 18 h of immersion we're: -0.240 and -0.550 V, respectively, for CC-TS and HC, versus Ag/AgCl,KClsat. Three orders of magnitude lower volume loss were found for CC-TS (HVOF) after friction tests compared with HC.
Resumo:
Stainless steel coatings obtained by High Velocity Oxygen Fuel (HVOF) were characterized using optical (OM) and scanning electron microscopy (SEM), electron probe micro-analysis, X-ray diffraction (XRD), open-circuit potential (E-OC) measurements, electrochemical impedance spectroscopy (EIS) and polarisation tests. Differences among coated steels were mainly related with the gun-substrate distance parameter (310 nm for samples A and B and 260 min for C and D). The open-circuit potential values measured for all the samples after 18 h of immersion in aerated and unstirred 3.4% NaCl solution were: - 0.334, - 0.360, - 0.379 and - 0.412 V vs. Ag/AgCl,KClsat. for samples A to D, respectively. For EIS measurements, Nyquist plots showed higher capacitive semi-circle for samples sprayed at longer distance, indicating higher corrosion resistance in NaCl solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the present work the corrosion resistance of micro-cracked hard chromium and Cr3C2-NiCr (HVOF) coatings applied on a steel substrate have been compared using open-circuit potential (E-OC) measurements, electrochemical impedance spectroscopy (EIS) and polarization curves. The coatings surfaces and cross-section were characterized before and after corrosion tests using optical microscopy (OM) and scanning electron microscopy (SEM). After 18 h of immersion, the open-circuit potential values were around -0.50 and -0.25V/(Ag vertical bar AgCl vertical bar KClsat) for hard chromium and Cr3C2- NiCr, respectively. The surface analysis done after 12 h of immersion showed iron on the hard chromium surface inside/near surface cracks, while iron was not detected on the Cr3C2-NiCr surface even after 18 h. For longer immersion time hard chromium was more degraded than thermal sprayed coating. For hard chromium coating a total resistance values between 50 and 80 k Omega cm(2) were measured and two well-defined time constants were observed, without significant change with the immersion time. For Cr3C2-NiCr coating the total impedance diminished from around 750 to 25 k Omega cm(2) as the immersion time increased from 17 up to 132 h and two overlapped time constants were also observed. Polarization curves recorded after 18 h of immersion showed a lower current and higher corrosion potential for Cr3C2-NiCr coating than other samples studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The influence of heat-treatments on the electrochemical behavior of thermal spray Cr3C2-NiCr coatings prepared by high velocity oxygen fuel (HVOF) was studied in NaCl solution, at 25 degrees C, using open-circuit potential (E-OC) and electrochemical impedance spectroscopy (EIS) measurements. Coating characterization were performed before and after the heat-treatments and electrochemical tests by scanning electron microscopy, X-ray diffraction, and Auger electron spectroscopy. In addition to the changes in the original powder composition occurring during HVOF process, heat-treatment performed at 450 degrees C caused no significant changes in electrochemical response compared with untreated sample, and at 760 degrees C the main difference was the formation of a thin and defective layer of Cr2O3 at the coating surface, which increased the total impedance at the first day of immersion. Higher influence on the electrochemical was noted for samples treated at 880 degrees C, which also showed higher E-OC and total impedance, and lower corrosion current. This behavior was interpreted considering the formation of a chromium oxide layer on the coating surface, dissolution and decomposition of smaller carbide particles and their surface enrichment with Cr due to C diffusion and dissolution into the matrix, and possible Ni, Cr, and Fe diffusion to coating/substrate interface. (c) 2006 the Electrochemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal spray WC-based coatings are widely used in the aircraft industry mainly for their resistance to wear, reworking and rebuilding operations and repair of worn components on landing gear, hydraulic cylinders, actuators, propeller hub assemblies, gas turbine engines, and so on. The aircraft industry is also trying to use thermal spray technology to replace electroplating coatings such as hard chromium. In the present work, WC-Co coatings were built up on an AA 7050 aluminum alloy using high velocity oxygen fuel (HVOF) technology and a liquid nitrogen cooling prototype system. The influence of the spray parameters (standard conditions, W19S, increasing the oxygen flux, W19H, and also increasing the carrier gas flux, W19F) on corrosion, friction, and abrasive wear resistance were also studied. The coatings were characterized using optical (OM) and scanning electron (SEM) microscopy, and X-ray diffraction (XRD). The friction and abrasive wear resistance of the coatings were studied using Rubber Wheel and Ball on Disk tests. The electrochemical studies were conducted using open-circuit potential (E(oc)) measurements and electrochemical impedance spectroscopy (EIS). Differences among coated samples were mainly related to the variation of the thermal spray parameters used during the spray process. No significant differences were observed in the wear resistance for the coatings studied, and all of them showed a wear rate around 10 times lower than that of the aluminum alloy. The results of mass loss and wear rate were interpreted considering different mechanisms. Comparing the different spray parameters, the oxygen flux (higher flame temperature) produced the sample which showed the highest corrosion resistance in aerated and unstirred 3.5% NaCl solution. Aluminum ions were detected on the surface almost immediately after the immersion of samples W19S and W19F in chloride solution, showing that the electrolyte reached the substrate and galvanic corrosion probably occurred. For sample W19H, aluminum ions were not detected even after 120 min of immersion in NaCl solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Herbal drugs have been widely evaluated as an alternative method of parasite control, aiming to slow development of resistance and obtain low-cost biodegradable parasiticides. This study evaluated the in vitro efficacy on Rhipicephalus (Boophilus) microplus of extracts from Carapa guianensis seed oil, Cymbopogon martinii and Cymbopogon schoenanthus leaf essential oil, and Piper tuberculatum leaf crude extract and similar synthesized substances. In the immersion test, engorged females were evaluated in five dilutions ranging from 10% to 0.030625% concentration. In the larval test on impregnated filter paper, the concentration ranged from 10% to 0.02%. The treatments and controls were done in three replicates. Chemical analysis of the oils was performed by gas chromatography. The main compounds were oleic acid (46.8%) for C. guianensis and geraniol for C. martinii (81.4%), and C. schoenanthus (62.5%). The isolated and synthesized substances showed no significant effect on larvae and adult. C. martinii and P. tuberculatum showed the best efficacy on the engorged females. The LC50 and LC90 were 2.93% and 6.66% and 3.76% and 25.03%, respectively. In the larval test, the LC50 and LC90 obtained for C. martinii, P. tuberculatum, and C. schoenanthus were 0.47% and 0.63%, 0.41% and 0.79%, 0.57% and 0.96%, respectively. The fact that geraniol is present in greater quantities in C. martinii explains its higher activity in relation to C. shoenanthus. It is necessary to validate the in vivo use of safe and effective phytoparasiticidal substances. Efforts should be focused on developing formulations that enhance the efficacy in vivo and lengthen the residual period.