On codimensions k immersions of m-manifolds for k=1 and k=m-2
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/08/2008
|
Resumo |
Let us consider M a closed smooth connected m-manifold, N a smooth ( 2m-2)-manifold and f: M -> N a continuous map, with m equivalent to 1( 4). We prove that if f*: H(1)(M; Z(2)) -> H(1)(f(M); Z(2)) is injective, then f is homotopic to an immersion. Also we give conditions to a map between manifolds of codimension one to be homotopic to an immersion. This work complements some results of Biasi et al. (Manu. Math. 104, 97-110, 2001; Koschorke in The singularity method and immersions of m-manifolds into manifolds of dimensions 2m-2, 2m-3 and 2m-4. Lecture Notes in Mathematics, vol. 1350. Springer, Heidelberg, 1988; Li and Li in Math. Proc. Camb. Phil. Soc. 112, 281-285, 1992). |
Formato |
527-530 |
Identificador |
http://dx.doi.org/10.1007/s00229-008-0193-8 Manuscripta Mathematica. New York: Springer, v. 126, n. 4, p. 527-530, 2008. 0025-2611 http://hdl.handle.net/11449/25138 10.1007/s00229-008-0193-8 WOS:000257751200006 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Manuscripta Mathematica |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |