177 resultados para Elapid Snakes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thrombocytopenia and platelet dysfunction occur in patients bitten by Bothrops sp snakes in Latin America. An experimental model was developed in mice to study the effects of B. asper venom in platelet numbers and function. Intravenous administration of this venom induces rapid and prominent thrombocytopenia and ex vivo platelet hypoaggregation. The drop in platelet numbers was primarily due to aspercetin, a protein of the C-type lectin family which induces von Willebrand factor-mediated platelet aggregation/agglutination. In addition, the effect of class P-III hemorrhagic metalloproteinases on the microvessel wall also contributes to thrombocytopenia since jararhagin, a P-III metalloproteinase, reduced platelet counts. Hypoaggregation was associated with the action of procoagulant and defibrin(ogen)ating proteinases jararacussin-1 (a thrombin-like serine proteinase) and basparin A (a prothrombin activating metalloproteinase). At the doses which induced hypoaggregation, these enzymes caused defibrin(ogen)ation, increments in fibrin(ogen) degradation products and D-dimer and prolongation of the bleeding time. Incubation of B. asper venom with batimastat and α 2-macroglobulin abrogated the hypoaggregating activity, confirming the role of venom proteinases in this effect. Neither aspercetin nor the defibrin(ogen)ating and hypoaggregating components induced hemorrhage upon intravenous injection. However, aspercetin, but not the thrombin-like or the prothrombin-activating proteinases, potentiated the hemorrhagic activity of two hemorrhagic metalloproteinases in the lungs. © 2005 Schattauer GmbH, Stuttgart.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Snakes are ectothermic animals and, therefore, their physiological functions are strongly affected by temperature. For instance, the resting metabolic rate (RMR) of this animals increase with the rise in body temperature. However, metabolic determinations in ectothermic organisms, including snakes, are generally made by submitting the animals to constant temperature regimes. This experimental procedure, although widely used, accepted and certainly suitable in several cases, submit the animals to a very different situation from that experienced by them in nature. In fact, ectothermics are known by presenting extensive variations in their body temperatures trough the day and/or seasons. If this disagreement between the thermal biology of the animals and the experimental conditions, for instance over the circadian cycle, affects the determinations of metabolic rates of ectotherm animals, remains quite uncertain. Thus, this study aimed to test the effects of different thermal regimes (fluctuating vs constant) in different temperature ranges over the TMR of rattlesnakes (Crotalus durissus). Therefore, the TMR of rattlesnakes was measured by the oxygen consumption rates ( V O2) in the constant temperatures of 15°C, 20°C, 25°C, 30°C and 35°C. For fluctuating regimes, snakes were measured in thermoperiods of 12/12 hours, as follows: 15°C and 25°C; 20°C and 30°C; 25°C and 35°C. Our results show that the RMR of C. durissus rises as the temperature increases, regardless of the thermal regime. The obtained RMR in the constant regimes of 20°C and 25°C was not different from that measured in the correspondent fluctuating regimes (i.e., 15 - 25°C e 20 - 30°C). However, at constant 30°C, the RMR was significantly higher than that obtained in the 30°C fluctuating regime (25 - 35ºC). This indicates that the potential effects in submitting of snakes to different thermal regimes of its thermal biology become more important with...