313 resultados para Apis mellifera bees
Resumo:
Replantation is an acceptable option for treatment of an avulsed permanent tooth. Nevertheless, an extended extraoral period damages the periodontal ligament and results in external root resorption. The purpose of this study was to assess by histologic and histometric analysis, the influence of propolis 15% (natural resinous substance collected by Apis mellifera bees from various plants) and the fluoride solution used as root surface treatment on the healing process after delayed tooth replantation. Thirty Wistar (Rattus norvegicus albinus) rats were submitted to extraction of their upper right incisor. The teeth were maintained in a dry environment for 60 min. After this, the pulp was extirpated and the papilla, enamel organ and periodontal ligament were removed with scalpel. The teeth were divided into three experimental groups: Group I - teeth immersed in 20 ml of physiologic saline; Group II - teeth immersed in 20 ml of 2% acidulated phosphate sodium fluoride; Group III - teeth immersed in 20 ml of 15% propolis. After 10 min of immersion in the solutions, the root canals were dried and filled with calcium hydroxide paste and the teeth were replanted. The animals were euthanized 60 days after replantation. The results showed that similar external root resorption was seen in the propolis and fluoride groups. Teeth treated with physiologic saline tended to have more inflammatory root resorption compared with those treated with fluoride or propolis. However, the comparative analysis did not reveal statistically significant differences (P > 0.05) between the treatment modalities when used for delayed tooth replantation.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A anatomia dos órgãos internos do aparelho reprodutor de machos (ARM) adultos e pupas foi comparada em 51 espécies de abelhas, incluindo representantes de seis famílias. Foram obtidos quatro tipos diferentes de ARM. O tipo I está presente em machos das famílias mais basais (Colletidae, Andrenidae e Halictidae) e é caracterizado por três túbulos seminíferos por testículo, o qual é quase totalmente envolvido pela membrana escrotal. O tipo II é um tipo intermediário entre os tipos I e III e está presente em Mellitidae e Megachilidae, como também em alguns Apidae estudados, sendo caracterizado por possuir dutos deferentes pós-vesiculares fora da membrana escrotal e possuir três ou quatro túbulos seminíferos por testículo, exceto Apis mellifera L., a qual possui secundariamente um número aumentado de túbulos. O tipo III foi achado somente nos Apidae estudados e é caracterizado por apresentar os testículos e dutos genitais (exceto o duto deferente pós-vesicular) encapsulados separadamente, as glândulas acessórias são bem desenvolvidas e o duto ejaculador é calibroso, apresentando fissuras em sua parede externa, as quais podem ocorrer também no tipo II. O tipo IV está presente exclusivamente na tribo Meliponini e é caracterizado pela ausência de glândulas acessórias.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Environmental factors and management techniques were evaluated in São Paulo, Brazil, for enhanced production of Africanized queen honey bees. Queens were reared by the Doolittle method; 12 breeder, 6 cell-builder, and 36 3-frame nucleus colonies were used. Nine groups of four virgin Africanized queen honey bees were subjected to the following treatments: queens were either 1-2, 3-4 or 5-6 days old and were released into mating nuclei containing either capped brood, uncapped brood or no brood. This was repeated sixteen times between August 1990 and August 1992. Seven repetitions occurred during nectar flow periods and nine repetitions occurred during nectar-dearth periods. Overall, 59% of 576 queens were successfully introduced and mated. The best results (93% success) were obtained during nectar flows, with 3- to 4-day-old queens released into nuclei containing capped brood. During nectar dearths the best mating success came from queens introduced into broodless nuclei (63%), the age of the queen did not influence mating success. Mating success decreased when wind velocity increased; this was the only significant meteorological effect found.
Resumo:
Midgut cells from the honey bee, Apis mellifera, and the stingless bees Scaptotrigona postica and Melipona quadrifasciata anthidioides were examined ultrastructurally and histochemically. Several types of protrusions were evident in the apical surface of the midgut cells. Large apical protrusions formed by the whole apical surface of the cell, whose content had a homogeneous cytoplasmic matrix devoid of organelles and with a different electron density from the subjacent cytoplasm. These protrusions can be cast out to the midgut lumen. A second type of large apical protrusion was produced between the cell microvilli, presenting many ribosomes and polyribosomes. In addition to these large protrusions two other kinds of small ones were observed. One type crowned the cell apex forming small spheres with irregular contours near the cells, and increasing in size further away. The other type was characterized by the microvilli swelling with an electron-lucent content. The Gomori acid phosphatase reaction was positive at the cell apex, in the pinched off protrusions and in the microvilli. These results are discussed in relation to the possible role of cell protrusions in secretory mechanisms.
Resumo:
The numbers of sensilla coeloconica and sensilla ampullacea of segment 10 of the antennae of Caucasian and Africanized worker bees and of their hybrids were counted with the aid of a scanning electron microscope. Africanized bees have fewer sensilla than Caucasian bees and the continuous distribution obtained from the F1 values suggests polygenic inheritance for the control of this trait. There are also indications that the hybrid Brazilian Apis mellifera studied here are close to typical African bees (Apis mellifera scutellata) in terms of number of sensilla.
Resumo:
We report nuclear acid phosphatase activity in the somatic (intra-ovariolar and stromatic) and germ cells of differentiating honey bee worker ovaries, as well as in the midgut cells of metamorphosing bees. There was heterogeneity in the intensity and distribution of electron dense deposits of lead phosphate, indicative of acid phosphatase activity in the nuclei of these tissues, during different phases of post-embryonic bee development. This heterogeneity was interpreted as a variation of the nuclear functional state, related to the cell functions in these tissues.
Resumo:
Hygienic behavior is a desirable trait in honey bees (Apis mellifera L.), as hygienic bees quickly remove diseased brood, intermpting the infectious cycle. Hygienic lines of honey bees appear to be more sensitive to the odors of dead and diseased honey bee brood, and Africanized honey bees are generally more hygienic than are European honey bees. We compared the number of sensilla placodea, antennal sensory structures involved in the perception of odor, in 10 bees from each of six hygienic and four non-hygienic colonies of Africanized honey bees. The sensilla placodea of three of the terminal segments (flagellomeres) of the right antenna of each bee were counted with a scanning electron microscope. There were no significant differences in the mean numbers of sensilla placodea between the hygienic and non-hygienic bees, though the variance was higher in the hygienic group. Flagellomere 4 had significantly more sensilla placodea than flagellomeres 6 and 8. However, there was no significant difference between the other two flagellomeres. As hygienic bees are capable of identifying dead, injured, or infested brood inside a capped brood cell, sensilla placodea probably have an important role in enabling worker bees to sense sick brood. However, we did not find greater numbers of this sensory structure in the antennae of hygienic, compared to non-hygienic Africanized honey bees.