195 resultados para symmetric orthogonal polynomials
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyze the presence of a scalar field around a spherically symmetric distribution of an ordinary matter, obtaining an exact solution for a given scalar field distribution.
Resumo:
A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.
Resumo:
The standard eleven-dimensional supergravity action depends on a three-form gauge field and does not allow direct coupling to five-branes. Using previously developed methods, we construct a covariant eleven-dimensional supergravity action depending on a three-form and six-form gauge field in a duality-symmetric manner. This action is coupled to both the M-theory two-brane and five-brane, and corresponding equations of motion are obtained. Consistent coupling relates D = 11 duality properties with self-duality properties of the M5-brane. From this duality-symmetric formulation, one derives an action describing coupling of the M-branes to standard D = 11 supergravity. © 1998 Elsevier Science B.V.
Resumo:
We reexamine the two-point function approaches used to study vacuum fluctuation in wedge-shaped regions and conical backgrounds. The appearance of divergent integrals is discussed and circumvented. The issue is considered in the context of a massless scalar field in cosmic string spacetime.
Resumo:
The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple extension of the expression for the Dyson-Mehta statistic Δ3 are compared with those of a more popular one, usually associated with the Berry-Robnik formalism. ©1999 The American Physical Society.
Resumo:
The Gross-Pitaevskii equation for Bose-Einstein condensation (BEC) in two space dimensions under the action of a harmonic oscillator trap potential for bosonic atoms with attractive and repulsive interparticle interactions was numerically studied by using time-dependent and time-independent approaches. In both cases, numerical difficulty appeared for large nonlinearity. Nonetheless, the solution of the time-dependent approach exhibited intrinsic oscillation with time iteration which is independent of space and time steps used in discretization.
Resumo:
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.
Resumo:
An extremal problem for the coefficients of sine polynomials, which are nonnegative in [0,π] , posed and discussed by Rogosinski and Szego is under consideration. An analog of the Fejér-Riesz representation of nonnegative general trigonometric and cosine polynomials is proved for nonnegative sine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szego are obtained explicitly. Associated cosine polynomials k n (θ) are constructed in such a way that { k n (θ) } are summability kernels. Thus, the L p , pointwise and almost everywhere convergence of the corresponding convolutions, is established. © 2002 Springer-Verlag New York Inc.
The Dirac-Hestenes equation for spherical symmetric potentials in the spherical and Cartesian gauges
Resumo:
In this paper, using the apparatus of the Clifford bundle formalism, we show how straightforwardly solve in Minkowski space-time the Dirac-Hestenes equation - which is an appropriate representative in the Clifford bundle of differential forms of the usual Dirac equation - by separation of variables for the case of a potential having spherical symmetry in the Cartesian and spherical gauges. We show that, contrary to what is expected at a first sight, the solution of the Dirac-Hestenes equation in both gauges has exactly the same mathematical difficulty. © World Scientific Publishing Company.
Resumo:
We present new sharp inequalities for the Maclaurin coefficients of an entire function from the Laguerre-Pólya class. They are obtained by a new technique involving the so-called very hyperbolic polynomials. The results may be considered as extensions of the classical Turán inequalities. © 2010 Elsevier Inc.