162 resultados para cholinergic antinociception
Resumo:
Tricyclic antidepressants, such as amitriptyline, are inhibitors of serotonin and norepinephrine neuronal reuptake and this action has been implied in changes in pain threshold supporting its use to alleviate neuropathic pain. Although is known that 1 adrenoceptors participate in the antinociceptive effect of amitriptyline it is unclear which receptor subtype is the target for the increased synaptic levels of norepinephrine resultant from the inhibition of neuronal uptake. Paradoxically, several tricyclic antidepressants including amitriptyline also behave as antagonists of 1 adrenoceptors with different affinities for its subtypes: these drugs have 10 to 100-fold higher affinities for 1A than for 1B and 1D adrenoceptors. This work investigated the involvement of 1 adrenoceptors subtypes in the antinociceptive effect of the amitriptyline in a constriction of the sciatic nerve in rats by determining the effects of subtype selective 1 adrenoceptors antagonists. Fifteen days later, mechanical hyperalgesia was analyzed in a Randall-Selitto test. The 1A-selective antagonist RS100329 was the most potent antagonist of the contractions of the rat prostate, whereas the 1D-selective antagonist BMY 7378 (up to 100g/Kg) was unable to affect these contractions. The antagonist prazosin, BMY 7378 and 5-methyl urapidil inhibited the antinociceptive effect of the amitriptyline. However, the highly selective 1A adrenoceptor antagonist RS100329 was unable to affect the antinociception induced by amitriptyline. These results point out that 1B and/or 1D adrenoceptors, but not 1A, are involved in the antinociceptive effects of amitriptyline
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h−1) and a constant f G (43.16 ± 1.74 breaths min−1). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h−1 and f G decreased to 39.12 ± 1.58 breaths min−1. During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h−1 and f G decreased to 34.97 ± 1.78 breaths min−1. These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To investigate two protocols to provide antinociception in horses. To evaluate the antinociceptive effects of intravenous methadone combined with detomidine or acepromazine in adult horses. Randomised, blinded, crossover study. Mechanical, thermal and electrical stimuli were applied to the dorsal left and right metacarpus and coronary band of the left thoracic limb, respectively. A thermal stimulus was applied caudal to the withers. The horses were treated with saline (C), a combination of methadone (0.2 mg/kg bwt) and detomidine (10 μg/kg bwt) (MD) or methadone (0.2 mg/kg bwt) and acepromazine (0.05 mg/kg bwt) (MA) at 1 week intervals. Nociceptive thresholds were measured before and at 15 min intervals until 150 min after treatment. Wilcoxon rank-sum and Wilcoxon signed rank tests were used to compare data between groups at each time point and over time within each group, followed by the Bonferroni method to adjust the P value. The mechanical stimulus was the most sensitive test to differentiate the antinociceptive effects of the treatments. Mechanical thresholds were greater after MD than MA between 15 and 30 min and with both MD and MA these thresholds were greater than C from 15 to 60 min. Electrical and thermal limb thresholds were greater after MD than C at 15 and 45 min and at 15, 30, 45, 75 and 105 min, respectively. Thermal limb thresholds were greater with MA than C at 30 min. Thoracic thermal threshold in MD and MA were higher than C at 45, 75, 90 and 120 min and from 30 to 75 min, respectively. Methadone and acepromazine produced less pronounced mechanical antinociception than MD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pain is one of the most common reasons for patients to seek medical care. Bee Apis mellifera venom (AMV) has traditionally been used to treat inflammatory diseases and the alleviation of pain. Herein, we aimed to investigate the visceral antinociceptive potential of A. mellifera bee venom and its possible mechanism of action. Acetic acid-induced writhing assay was used in mice to determine the degree of visceral antinociception. Visceral antinociceptive activity was expressed as the reduction in the number of abdominal constrictions. Mice received an intraperitoneal injection of acetic acid after administration of AMV (0.08 or 0.8 mg/kg; intraperitoneally (i.p.)). In mechanistic studies, separate experiments were realized to examine the role of α2-receptors, nitric oxide, calcium channels, K+ATP channel activation, TRPV1 and opioid receptors on the visceral antinociceptive effect of AMV (0.8 mg/kg), using appropriate antagonists, yohimbine (2 mg/kg), L-NG-Nitroarginine methyl ester (L-NAME, 10 mg/kg), verapamil (5 mg/kg), glibenclamide (5 mg/kg), ruthenium red (3 mg/kg) or naloxone (2 mg/kg). AMV presented visceral antinociceptive activity in both doses tested (0.08 and 0.8 mg/Kg). Visceral antinociceptive effect of AMV was resistant to all the antagonists used. Mice showed no significant alterations in locomotion frequency, indicating that the observed antinociception is not a consequence of motor abnormality. Although AMV efficient diminished the acetic acid-evoked pain-related behavior, its mechanism is unclear from this study and future studies are needed to verify how the venom exerts its antinociceptive action.