166 resultados para Immobilized enzymes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to evaluate the efficacy of peroxidase immobilized on corncob powder for the discoloration of dye. Peroxidase was extracted from soybean seed coat, followed by amination of the surface of the tertiary structure. The aminated peroxidase was immobilized on highly activated corncob powder and employed for the discoloration of bromophenol blue. Amination was performed with 10 or 50 mmol.L-1 carbodiimide and 1 mol.L-1 ethylenediamine. The amount of protein in the extract was 0.235 ± 0.011 mg.mL-1 and specific peroxidase activity was 86.06 ± 1.52 µmol min-1 . mg-1, using 1 mmol.L-1 ABTS as substrate. Ten mmol.L-1 and 50 mmol.L-1 aminated peroxidase retained 88 and 100% of the initial activity. Following covalent immobilization on a corncob powder-glyoxyl support, 10 and 50 mmol.L-1 aminated peroxidase retained 74 and 86% of activity, respectively. Derivatives were used for the discoloration of 0.02 mmol.L-1 bromophenol blue solution. After 30 min, 93 and 89% discoloration was achieved with the 10 mmol.L-1 and 50 mmol.L-1 derivatives, respectively. Moreover, these derivatives retained 60% of the catalytic properties when used three times. Peroxidase extracted from soybean seed coat immobilized on a low-cost corncob powder support exhibited improved thermal stability.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the polyamine-modified lysine, hypusine [Nε-(4-amino-2-hydroxybutyl)lysine]. Hypusine occurs only in eukaryotes and certain archaea, but not in eubacteria. It is formed post-translationally by two consecutive enzymatic reactions catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Hypusine modification is essential for the activity of eIF5A and for eukaryotic cell proliferation. eIF5A binds to the ribosome and stimulates translation in a hypusine-dependent manner, but its mode of action in translation is not well understood. Since quantities of highly pure hypusine-modified eIF5A is desired for structural studies as well as for determination of its binding sites on the ribosome, we have used a polycistronic vector, pST39, to express eIF5A alone, or to co-express human eIF5A-1 with DHS or with both DHS and DOHH in Escherichia coli cells, to engineer recombinant proteins, unmodified eIF5A, deoxyhypusine- or hypusine-modified eIF5A. We have accomplished production of three different forms of recombinant eIF5A in high quantity and purity. The recombinant hypusine-modified eIF5A was as active in methionyl-puromycin synthesis as the native, eIF5A (hypusine form) purified from mammalian tissue. The recombinant eIF5A proteins will be useful tools in future structure/function and the mechanism studies in translation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as 'moonlighting'proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitratelyase, malatesynthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Resumo:
The use of an amperometric biosensor for the salicylate determination in blood serum is described. The biosensor is based on salicylate hydroxylase (EC 1.14.13.1) electropolymerized onto a glassy carbon-working electrode with polypyrrole and glutaraldehyde, to improve the biosensor lifetime. The hexacyanoferrate (II) was also incorporated to work as a redox mediator to minimize possible interferences. The salicylate is enzymatically converted to catechol, which is monitored amperometrically by its electrooxidation at +0.170 V versus SCE (saturated calomel electrode). Salicylate determination was carried out maintaining the ratio between β-NADH and salicylate at 4:1 (30°C). The amperometric response of the biosensor was linearly proportional to the salicylate concentration between 2.3 x 10-6 and 1.4 x 10-5 mol l- 1, in 0.1 mol l-1 phosphate buffer (pH 7.8), containing 0.1 mol l-1 KCl and 5.0 x 10-4 mol l-1 Na2H2EDTA, as supporting electrolyte. The recovery studies, in the presence of several interfering compounds, showed recoveries between 96.4 and 104.8%. The useful lifetime of the biosensor in the concentration range evaluated was at least 40 days, in continuous use. Blood serum samples analyzed by this biosensor showed a good correlation compared to the spectrophotometric method (Trinder) used as reference, presenting relative deviations lower than 7.0%. (C) 2000 Elsevier Science B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A mutant that exhibited increased melanin pigment production was isolated from Aspergillus nidulans fungus. This pigment has aroused biotechnological interest due to its photoprotector and antioxidant properties. In a recent study, we showed that melanin from A. nidulans also inhibits NO and TNF-α production. The present study evaluates the mutagenicity and cytotoxicity of melanin extracted from A. nidulans after its exposure to liver S9 enzymes. The cytotoxicity of multiple concentrations of melanin (31.2-500 μg/mL) against the McCoy cell line was evaluated using the Neutral Red assay, after incubation for 24 h. Mutagenicity was assessed using the Ames test with the Salmonella typhimurium strains TA98, TA97a, TA100, and TA102 at concentrations ranging from 125 μg/plate to 1 mg/plate after incubation for 48 h. The cytotoxicity of A. nidulans melanin after incubation with S9 enzymes was less than (CI50 value= 413.4 ± 3.1 μg/mL) that of other toxins, such as cyclophosphamide (CI50 value = 15 ± 1.2 μg/mL), suggesting that even the metabolised pigment does not cause significant damage to cellular components at concentrations up to 100 μg/mL. In addition, melanin did not exhibit mutagenic properties against the TA 97a, TA 98, TA 100, or TA 102 strains of S. typhimurium, as shown by a mutagenic index (MI) <2 in all assays. The significance of these results supports the use of melanin as a therapeutic reagent because it possesses low cytotoxicity and mutagenic potential, even when processed through an external metabolising system.
Resumo:
The antibiotics sulfamethoxazole (SMTX) and ciprofloxacin (CIP) are commonly used in human and veterinary medicine, which explains their occurrence in wastewater. Anaerobic reactors are low-cost, simple and suitable technology to wastewater treatment, but there is a lack of studies related to the removal efficiency of antibiotics. To overcome this knowledge gap, the objective of this study was to evaluate the removal kinetics of SMTX and CIP using a horizontal-flow anaerobic immobilized biomass reactor. Two different concentrations were evaluated, for SMTX 20 and 40 μg L(-1); for CIP 2.0 and 5.0 μg L(-1). The affluent and effluent analysis was carried out in liquid chromatography/tandem mass spectrometry (LC-MS/MS) with the sample preparation procedure using an off-line solid-phase extraction. This method was developed, validated and successfully applied for monitoring the affluent and effluent samples. The removal efficiency found for both antibiotics at the two concentrations studied was 97%. Chemical oxygen demand (COD) exhibited kinetic constants that were different from that observed for the antibiotics, indicating the absence of co-metabolism. Also, though the antibiotic concentration was increased, there was no inhibitory effect in the removal of COD and antibiotics.