162 resultados para Fundamentals in linear algebra
Linear Versus Geometric Morphometric Approaches for the Analysis of Head Shape Dimorphism in Lizards
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that the BRST cohomology of the massless sector of the Type IIB superstring on AdS(5) x S (5) can be described as the relative cohomology of an infinite-dimensional Lie superalgebra. We explain how the vertex operators of ghost number 1, which correspond to conserved currents, are described in this language. We also give some algebraic description of the ghost number 2 vertices, which appears to be new. We use this algebraic description to clarify the structure of the zero mode sector of the ghost number two states in flat space, and initiate the study of the vertices of the higher ghost number.
Resumo:
We point out a misleading treatment in the recent literature regarding confining solutions for a scalar potential in the context of the Duffin-Kemmer-Petiau theory. We further present the proper bound-state solutions in terms of the generalized Laguerre polynomials and show that the eigenvalues and eigenfunctions depend on the solutions of algebraic equations involving the potential parameter and the quantum number. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this paper is to present the application of a three-phase harmonic propagation analysis time-domain tool, using the Norton model to approach the modeling of non-linear loads, making the harmonics currents flow more appropriate to the operation analysis and to the influence of mitigation elements analysis. This software makes it possible to obtain results closer to the real distribution network, considering voltages unbalances, currents imbalances and the application of mitigation elements for harmonic distortions. In this scenario, a real case study with network data and equipments connected to the network will be presented, as well as the modeling of non-linear loads based on real data obtained from some PCCs (Points of Common Coupling) of interests for a distribution company.
Resumo:
In this paper we deal with the notion of regulated functions with values in a C*-algebra A and present examples using a special bi-dimensional C*-algebra of triangular matrices. We consider the Dushnik integral for these functions and shows that a convenient choice of the integrator function produces an integral homomorphism on the C*-algebra of all regulated functions ([a, b], A). Finally we construct a family of linear integral functionals on this C*-algebra.
Resumo:
For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.
Resumo:
We show that the partition function of the super eigenvalue model satisfies, for finite N (non-perturbatively), an infinite set of constraints with even spins s = 4, 6, . . . , ∞. These constraints are associated with half of the bosonic generators of the super (W∞/2 ⊕ W1+∞/2) algebra. The simplest constraint (s = 4) is shown to be reducible to the super Virasoro constraints, previously used to construct the model.