218 resultados para homoclinic chaos
Resumo:
We explore the idea that chaos concepts might be useful for understanding the thermalization in gauge theories. The SU(2) Higgs model is discussed as a prototype of system with gauge fields coupled to matter fields. Through the numerical solution of the equations of motion, we are able to characterize chaotic behavior via the corresponding Lyapunov exponent. Then it is demonstrated that the system's approach to equilibrium can be understood through direct application of the principles of Statistical Mechanics. © 2013 AIP Publishing LLC.
Resumo:
The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
The dynamics of dissipative and coherent N-body systems, such as a Bose-Einstein condensate, which can be described by an extended Gross-Pitaevskii formalism, is investigated. In order to analyze chaotic and unstable regimes, two approaches are considered: a metric one, based on calculations of Lyapunov exponents, and an algorithmic one, based on the Lempel-Ziv criterion. The consistency of both approaches is established, with the Lempel-Ziv algorithmic found as an efficient complementary approach to the metric one for the fast characterization of dynamical behaviors obtained from finite sequences. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A rescale of the phase space for a family of two-dimensional, nonlinear Hamiltonian mappings was made by using the location of the first invariant Kolmogorov-Arnold-Moser (KAM) curve. Average properties of the phase space are shown to be scaling invariant and with different scaling times. Specific values of the control parameters are used to recover the Kepler map and the mapping that describes a particle in a wave packet for the relativistic motion. The phase space observed shows a large chaotic sea surrounding periodic islands and limited by a set of invariant KAM curves whose position of the first of them depends on the control parameters. The transition from local to global chaos is used to estimate the position of the first invariant KAM curve, leading us to confirm that the chaotic sea is scaling invariant. The different scaling times are shown to be dependent on the initial conditions. The universality classes for the Kepler map and mappings with diverging angles in the limit of vanishing action are defined. © 2013 Published by Elsevier Inc. All rights reserved.
Resumo:
The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
The Poincaré plot for heart rate variability analysis is a technique considered geometrical and non-linear, that can be used to assess the dynamics of heart rate variability by a representation of the values of each pair of R-R intervals into a simplified phase space that describes the system's evolution. The aim of the present study was to verify if there is some correlation between SD1, SD2 and SD1/SD2 ratio and heart rate variability nonlinear indexes either in disease or healthy conditions. 114 patients with arterial coronary disease and 65 healthy subjects underwent 30. minute heart rate registration, in supine position and the analyzed indexes were as follows: SD1, SD2, SD1/SD2, Sample Entropy, Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Detrended Fluctuation Analysis, SDNN, RMSSD, LF, HF and LF/HF ratio. Correlation coefficients between SD1, SD2 and SD1/SD2 indexes and the other variables were tested by the Spearman rank correlation test and a regression analysis. We verified high correlation between SD1/SD2 index and HE and DFA (α1) in both groups, suggesting that this ratio can be used as a surrogate variable. © 2013 Elsevier B.V.
Resumo:
We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)