144 resultados para glucose transporter 2


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dexamethasone (DEXA) is a synthetic glucocorticoid widely used in the handling of several drugs, for its proven benefits in fighting inflammation and allergies. Despite their benefits, their chronic use leads to several side effects that include changes in the body in the metabolism of carbohydrates, lipids and proteins. Moreover, being an anti-inflammatory, acts on the arachidonic acid pathway, reducing the expression of the enzyme cyclooxygenase (COX-2) and growth factor derived from the endothelium of blood vessels (VEGF) in various tissues. However, its effects on the myocardium are still uncertain. The physical training (PT), in turn, promotes effects contrary to those caused by chronic use of DEXA, however, little is known about the preventive effects of TF in the side effects of Dexa in the myocardium. Therefore, the aim of this study was to determine if the TF has the ability to prevent and/or mitigate the effects of Dexa in protein expression of COX-2 and VEGF in the myocardium. Forty animals were divided into 4 groups: sedentary control (SC), sedentary treated with Dexa (SD), trained control (TC) and Trained treated with Dexa (TD) and submitted to a protocol of physical training on the treadmill for 70 days (1 h/day-5 days per week, 60% of physical capacity) or kept sedentary. Over the past 10 days, rats were treated with Dexa (Decadron, 0.5 mg/kg per day, ip) or saline. During training the animals were weighed weekly and during treatment daily. At the end of treatment was made to measure fasting glucose levels of animals. The rats were killed with excess anesthesia and cardiac muscle was removed, weighed, homogenized, centrifuged and stored at -20° C for analysis of protein expression of VEGF and COX-2 by Western blotting technique. Treatment with dexamethasone caused a weight loss of 18% in sedentary animals and 13% in trained as well as elevated levels of fasting glucose in sedentary (88%). The TF was unable to mitigate the loss in...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BackgroundDiabetes is associated with long-term damage, dysfunction and failure of various organs, especially the eyes, kidneys, nerves, heart and blood vessels. The risk of developing type 2 diabetes increases with age, obesity and lack of physical activity. Insulin resistance is a fundamental aspect of the aetiology of type 2 diabetes. Insulin resistance has been shown to be associated with atherosclerosis, dyslipidaemia, glucose intolerance, hyperuricaemia, hypertension and polycystic ovary syndrome. The mineral zinc plays a key role in the synthesis and action of insulin, both physiologically and in diabetes mellitus. Zinc seems to stimulate insulin action and insulin receptor tyrosine kinase activity.ObjectivesTo assess the effects of zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance.Search methodsThis review is an update of a previous Cochrane systematic review published in 2007. We searched the Cochrane Library (2015, Issue 3), MEDLINE, EMBASE, LILACS and the ICTRP trial register (frominception toMarch 2015). There were no language restrictions. We conducted citation searches and screened reference lists of included studies.Selection criteriaWe included studies if they had a randomised or quasi-randomised design and if they investigated zinc supplementation compared with placebo or no intervention in adults with insulin resistance living in the community.Data collection and analysisTwo review authors selected relevant trials, assessed risk of bias and extracted data.Main resultsWe included three trials with a total of 128 participants in this review. The duration of zinc supplementation ranged between four and 12 weeks. Risk of bias was unclear for most studies regarding selection bias (random sequence generation, allocation concealment) and detection bias (blinding of outcome assessment). No study reported on our key outcome measures (incidence of type 2 diabetes mellitus, adverse events, health-related quality of life, all-cause mortality, diabetic complications, socioeconomic effects). Evaluation of insulin resistance as measured by the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) showed neutral effects when comparing zinc supplementation with control (two trials; 114 participants). There were neutral effects for trials comparing zinc supplementation with placebo for total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides (2 studies, 70 participants). The one trial comparing zinc supplementation with exercise also showed neutral effects for total cholesterol, HDL and LDL cholesterol, and a mean difference in triglycerides of -30 mg/dL (95% confidence interval (CI) -49 to -10) in favour of zinc supplementation (53 participants). Various surrogate laboratory parameters were also analysed in the included trials.Authors'conclusionsThere is currently no evidence on which to base the use of zinc supplementation for the prevention of type 2 diabetes mellitus. Future trials should investigate patient-important outcome measures such as incidence of type 2 diabetes mellitus, health-related quality of life, diabetic complications, all-cause mortality and socioeconomic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the relationship between blood lactate and glucose during an incremental test after exercise induced lactic acidosis, under normal and acute β-adrenergic blockade. Eight fit males (cyclists or triathletes) performed a protocol to determine the intensity corresponding to the individual equilibrium point between lactate entry and removal from the blood (incremental test after exercise induced lactic acidosis), determined from the blood lactate (Lacmin) and glucose (Glucmin) response. This protocol was performed twice in a double-blind randomized order by ingesting either propranolol (80 mg) or a placebo (dextrose), 120 min prior to the test. The blood lactate and glucose concentration obtained 7 minutes after anaerobic exercise (Wingate test) was significantly lower (p<0.01) with the acute β-adrenergic blockade (9.1±1.5 mM; 3.9±0.1 mM), respectively than in the placebo condition (12.4±1.8 mM; 5.0±0.1 mM). There was no difference (p>0.05) between the exercise intensity determined by Lacmin (212.1±17.4 W) and Glucmin (218.2±22.1 W) during exercise performed without acute β-adrenergic blockade. The exercise intensity at Lacmin was lowered (p<0.05) from 212.1±17.4 to 181.0±15.6 W and heart rate at Lacmin was reduced (p<0.01) from 161.2±8.4 to 129.3±6.2 beats min-1 as a result of the blockade. It was not possible to determine the exercise intensity corresponding to Glucmin with β-adrenergic blockade, since the blood glucose concentration presented a continuous decrease during the incremental test. We concluded that the similar pattern response of blood lactate and glucose during an incremental test after exercise induced lactic acidosis, is not present during β-adrenergic blockade suggesting that, at least in part, this behavior depends upon adrenergic stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose biosensors based on lyophilised, crystalline and cross-linked glucose oxidase (GOx, CLEC(R)) and commercially available lyophilised GOx immobilised on top of glassy carbon electrodes modified with electrodeposited Prussian Blue are critically compared. Two procedures were carried out for preparing the biosensors: (1) deposition of one layer of adsorbed GOx dissolved in an aqueous solution followed by deposition of two layers of low molecular weight Nafion(R) dissolved in 90% ethanol, and (2) deposition of two layers of a mixture of GOx with Nafion dissolved in 90% ethanol. The performance of the biosensors was evaluated in terms of linear response range for hydrogen peroxide and glucose, detection limit, and susceptibility to some common interfering species (ascorbic acid, acetaminophen and uric acid). The operational stability of the biosensors was evaluated by applying a steady potential of -50 mV versus Ag/AgCl to the glucose biosensor and injecting standard solutions of hydrogen peroxide and glucose (50 muM and 1.0 mM, respectively, in phosphate buffer) for at least 5 h in a flow-injection system. Scanning electron microscopy was used for visualisation of the Prussian Blue redox catalyst and in the presence of the different GOx preparations on the electrode surface. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the research was to evaluate the effect of a training program of physical exercises mixed (aerobic / anaerobic conditioning circuit-break with active), including exercises, walking, weight training and Swiss ball, caused about possible changes in their metabolic system, as changes acute and chronic, individuals bearers of DM2. The methodology used is a model of experimented design of pretest and post-test applied to the group. The blood glucose levels were analyzed in fasting pre-test and post-test, and capillary glycemia in three periods of physical exercise: pre, during and post training, and the statistical processing done by the use of Statistical Software for PC-For SPSS ® Windows ®, V. 12.0 .. With the result has been a drop in the values significant glucometers between 6 weeks of training, with a negative delta average of 68 mg / dl. Furthermore, similar results were also found variations in the daily glycemic between the moments before and after the training session acute. Thus we find that, regardless of the biological mechanism responsible, the program mixed aerobic and anaerobic conditioning circuit-break with active was effective in reducing and controlling chronic and acute glycemic of subjects type 2 diabetic.