261 resultados para Suspensions.
Resumo:
The objective of this study was to evaluate the effect of photodynamic therapy with erythrosine and rose bengal using a light-emitting diode (LED) on planktonic cultures of S. mutans. Ten S. mutans strains, including nine clinical strains and one reference strain (ATCC 35688), were used. Suspensions containing 10 6 cells/mL were prepared for each strain and were tested under different experimental conditions: a) LED irradiation in the presence of rose bengal as a photosensitizer (RB+L+); b) LED irradiation in the presence of erythrosine as a photosensitizer (E+L+); c) LED irradiation only (P-L+); d) treatment with rose bengal only (RB+L-); e) treatment with erythrosine only (E+L-); and f) no LED irradiation or photosensitizer treatment, which served as a control group (P-L-). After treatment, the strains were seeded onto BHI agar for determination of the number of colony-forming units (CFU/mL). The results were submitted to analysis of variance and the Tukey test (p ≤ 0.05). The number of CFU/mL was significantly lower in the groups submitted to photodynamic therapy (RB+L+ and E+L+) compared to control (P-L-), with a reduction of 6.86 log 10 in the RB+L+ group and of 5.16 log 10 in the E+L+ group. Photodynamic therapy with rose bengal and erythrosine exerted an antimicrobial effect on all S. mutans strains studied.
Resumo:
The ability to control the carbon nanotube (CNT) dispersion in polymers is considered the key to most applications of nanotube/polymer composites. The carbon nanotube dispersion into water with different surfactants, as well as its incorporation into phenolic resins, was investigated. Ultrasonication of liquid suspensions was used to prepare stable dispersions. In order to evaluate the best surfactant to be used, light scattering and UV-Visible spectroscopy were employed. The structure of CNT reinforced of phenolic resin was analyzed in function of the concentration and type of surfactant, sonication power and time. It was also evaluated the influence in the dispersion by using the glass temperature transition properties being obtained by dynamic mechanical analyses and impact energy. © 2011 Sociedade Brasileira de Química.
Resumo:
Porous ceramics can be produced by adding starch (corn, potato) and protein (animal or vegetable) to raw material as pore forming element. In this study, titanium dioxide ceramics were formed by vegetable protein consolidation. Soybean was chosen as the binding agent and pore forming. The samples, which were produced in cylindrical shape, had the following processing: material mixture, gelling, drying, pre-sintering and sintering. Heated platinum microscopy were performed by using suspensions with different compositions in order to verify protein gelling capacity and better know the temperature in which this process occurs. The samples were characterized by apparent porosity and roughness measurement. Besides, imaging by light microscopy was also performed in order to determine the sample morphology and porosity. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Sitophilus zeamais (Mots.) (Coleoptera: Curculionidae) is considered a major pest of maize, responsible for reducing grain quality and making the corn inappropriate for industrial use and human consumption. S. zeamais has been controlled exclusively with chemical products. The objective of this research was to select isolates of Beauveria bassiana (Bals.) Vuill. to control S. zeamais. Beetles were immersed in conidia suspensions of each isolate for five seconds and placed in a gerbox container with maize grains. In pathogenicity tests, the isolates that caused the highest mortality to the maize weevil were ESALQ-447 (68.0%), CCA-UFES/ Bb-36 (57.3%) and CCA-UFES/Bb-31 (51.3%). ESALQ-447 was the most virulent, with an LC50 of 1.7 × 107 conidia/ml and shows promise for controlling maize weevils. These isolates of B. bassiana can be used as effective substitutes for conventional chemical control, normally carried out with phosphine. Further tests should be performed under field and semi-field conditions to develop an appropriate strategy for the use of this entomopathogen to manage S. zeamais.
Resumo:
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Objective: This study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Methods: Acrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 10 7 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino} carbonyl]-2H-tetrazolium-hydroxide) method. Results: For rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings. Conclusions: S and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis. © 2012 Elsevier Ltd.
Resumo:
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride- phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm-2. Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. Candida albicans biofilm overview after 30 min of contact with free ClAlPc. This study presents the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic nanoemulsions (NE) to inactivate C. albicans planktonic cultures and biofilm comparing with free ClAlPc. The photodynamic effect was dependent on the delivery system, superficial charge and light dose. Cationic NE-ClAlPc and free ClAlPc caused significant reduction in colony counts, cell metabolism and damage to the cell membrane (P < 0.05). However, only the free ClAlPc was able to cause photokilling of the yeast. The anionic NE-ClAlPc did not present antifungal activity. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Resumo:
Photodynamic therapy has been investigated as an alternative method of killing pathogens in response to the multiantibiotic resistance problem. This study evaluated the photodynamic effect of curcumin on methicillin-resistant Staphylococcus aureus (MRSA) compared to susceptible S. aureus (MSSA) and L929 fibroblasts. Suspensions of MSSA and MRSA were treated with different concentrations of curcumin and exposed to light-emitting diode (LED). Serial dilutions were obtained from each sample, and colony counts were quantified. For fibroblasts, the cell viability subsequent to the curcumin-mediated photodynamic therapy was evaluated using the MTT assay and morphological changes were assessed by SEM analysis. Curcumin concentrations ranging from 5.0 to 20.0 μM in combination with any tested LED fluences resulted in photokilling of MSSA. However, only the 20.0 μM concentration in combination with highest fluence resulted in photokilling of MRSA. This combination also promoted an 80% reduction in fibroblast cell metabolism and morphological changes were present, indicating that cell membrane was the main target of this phototherapy. The combination of curcumin with LED light caused photokilling of both S. aureus strains and may represent an alternative treatment for eradicating MRSA, responsible for significantly higher morbidity and mortality and increased healthcare costs in institutions and hospitals. © 2012 Springer-Verlag London Ltd.
Resumo:
Objectives: The aim of this study was to evaluate the effects of pre-irradiation time (PIT) on curcumin (Cur)-mediated photodynamic therapy (PDT) against planktonic and biofilm cultures of reference strains of Candida albicans, Candida glabrata and Candida dubliniensis. Materials and methods: Suspensions and biofilms of Candida species were maintained in contact with different concentrations of Cur for time intervals of 1, 5, 10 and 20 min before irradiation and LED (light emitting diode) activation. Additional samples were treated only with Cur, without illumination, or only with light, without Cur. Control samples received neither light nor Cur. After PDT, suspensions were plated on Sabouraud Dextrose Agar, while biofilm results were obtained using the XTT-salt reduction method. Confocal Laser Scanning Microscopy (CLSM) observations were performed to supply a better understanding of Cur penetration through the biofilms after 5 and 20 min of contact with the cultures. Results: Different PITs showed no statistical differences in Cur-mediated PDT of Candida spp. cell suspensions. There was complete inactivation of the three Candida species with the association of 20.0 μM Cur after 5, 10 and 20 min of PIT. Biofilm cultures showed significant reduction in cell viability after PDT. In general, the three Candida species evaluated in this study suffered higher reductions in cell viability with the association of 40.0 μM Cur and 20 min of PIT. Additionally, CLSM observations showed different intensities of fluorescence emissions after 5 and 20 min of incubation. Conclusion: Photoinactivation of planktonic cultures was not PIT-dependent. PIT-dependence of the biofilm cultures differed among the species evaluated. Also, CLSM observations confirmed the need of higher time intervals for the Cur to penetrate biofilm structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work focuses on applying fuzzy control embedded in microcontrollers in an experimental apparatus using magnetorheological fluid damper. The non-linear behavior of the magnetorheological dampers associated with the parametric variations on vehicle suspension models corroborate the use of the fuzzy controllers. The fundamental formulation of this controller is discussed and its performance is shown through numeric simulations. An experimental apparatus representing a two degree of freedom system containing a magnetorheological damper is used to identify the main parameters and to evaluate the performance of the closed-loop system with the embedded low-cost microcontroller-based fuzzy controller. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
Optimization of the major properties of anodes based on proton conductors, such as microstructure, conductivity and chemical stability, is yet to be achieved. In this study we investigated the influence of indium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO-BaCe0.9-xInxY0.1O 3-δ (NiO-BCIYx) anodes. Four compositions of cermet anode substrates NiO-BCIYx were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of indium. Anode substrates tested on chemical stability in the CO2 atmosphere showed high stability compared to anode substrates based on commonly used doped barium cerates. Microstructural properties of the anode pellets before and after testing in CO2 were investigated using X-ray diffraction analysis. Impedance spectroscopy measurements were used for evaluation of electrical properties of the anode pellets and the conductivity values of reduced anodes of more than 14 S cm-1 at 600 °C confirmed percolations through Ni particles. Under fuel cell operating conditions, the cell with a Ni-BCIY20 anode achieved the highest performance, demonstrating a peak power density 223 mW/cm2 at 700 °C confirming the functionality of Ni-BCIY anodes.© 2013 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To investigate the effect of fluoride (0, 275 and 1250 ppm F; NaF) in combination with normal and low salivary flow rates on enamel surface loss and fluoride uptake using an erosion-remineralization-abrasion cycling model. Design: Enamel specimens were randomly assigned to 6 experimental groups (n = 8). Specimens were individually placed in custom made devices, creating a sealed chamber on the enamel surface, connected to a peristaltic pump. Citric acid was injected into the chamber for 2 min followed by artificial saliva at 0.5 (normal flow) or 0.05 (low flow) ml/min, for 60 min. This cycle was repeated 4×/day, for 5 days. Toothbrushing with abrasive suspensions containing fluoride was performed for 2 min (15 s of actual brushing) 2×/day. Surface loss was measured by optical profilometry. KOH-soluble fluoride and enamel fluoride uptake were determined after the cycling phase. Data were analysed by two-way ANOVA. Results: No significant interactions between fluoride concentration and salivary flow were observed for any tested variable. Low caused more surface loss than normal flow rate (p < 0.01). At both flow rates, surface loss for 0 was higher than for 275, which did not differ from 1250 ppm F. KOH-soluble and structurally-bound enamel fluoride uptake were significantly different between fluoride concentrations with 1250 > 275 > 0 ppm F (p < 0.01). Conclusions: Sodium fluoride reduced enamel erosion/abrasion, although no additional protection was provided by the higher concentration. Higher erosion progression was observed in low salivary flow rates. Fluoride was not able to compensate for the differences in surface loss between flow rates. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
This in vitro study evaluated the effect of photodynamic therapy (PDT) on the multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans. Standardized fungal and bacterial suspensions were cultivated appropriately for each species and inoculated in 96-well microtiter plates for mix-biofilm formation. After 48 h of incubation, the biofilms were submitted to PDT (P + L+) using Photodithazine® (PDZ) at 100, 150, 175, 200, or 250 mg/mL for 20 min and 37.5 J/cm2 of light-emitting diode (LED) (660 nm). Additional samples were treated only with PDZ (P + L-) or LED (P-L+), or neither (control, P-L-). Afterwards, the biofilms were evaluated by quantification of colonies (CFU/mL), metabolic activity (XTT reduction assay), total biomass (crystal violet staining), and confocal scanning laser microscopy (CSLM). Data were analyzed by one-way ANOVA and Tukey tests (p < 0.05). Compared with the control, PDT promoted a significant reduction in colonies viability of the three species evaluated with 175 and 200 mg/mL of PDZ. PDT also significantly reduced the metabolic activity of the biofilms compared with the control, despite the PDZ concentration. However, no significant difference was found in the total biomass of samples submitted or not to PDT. For all analysis, no significant difference was verified among P-L-, P + L-, and P-L+. CSLM showed a visual increase of dead cells after PDT. PDT-mediated PDZ was effective in reducing the cell viability of multispecies biofilm. © 2013 Springer-Verlag London.