327 resultados para Single phase power systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Considerando a crescente utilização de técnicas de processamento digital de sinais em aplicações de sistemas eletrônicos e ou de potência, este artigo discute o uso da Transformada Discreta de Fourier Recursiva (TDFR) para identificação do ângulo de fase, da freqüência e da amplitude das tensões fundamentais da rede, independente de distorções na forma de onda ou de transitórios na amplitude. Será discutido que, se a freqüência fundamental das tensões medidas coincide com a freqüência a qual a TDF foi projetada, um simples algoritmo TDFR é completamente capaz de fornecer as informações requeridas de fase, freqüência e amplitude. Dois algoritmos adicionais são propostos para garantir seu desempenho correto quando a freqüência difere do seu valor nominal: um deles para a correção do erro de fase do sinal de saída e outro para identificação da amplitude do componente fundamental. Além disto, destaca-se que através dos algoritmos propostos, independentemente do sinal de entrada, a identificação do componente fundamental pode ser realizada em, no máximo, 2 ciclos da rede. Uma análise dos resultados evidenciados pela TDFR foi desenvolvida através de simulações computacionais. Também serão apresentados resultados experimentais referentes ao sincronismo de um gerador síncrono com a rede elétrica, através dos sinais fornecidos pela TDFR.
Resumo:
In this work a detailed modeling of three-phase distribution transformers aimed at complementing well-known approaches is presented. Thus, incidence of angular displacement and tapping is taken into account in the proposed models, considering both actual values and per unit. The analysis is based on minimal data requirement: solely short-circuit admittance is needed since three-phase transformers are treated as non-magnetically-coupled single-phase transformers. In order to support the proposed methodology, results obtained through laboratory tests are presented.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A recent and innovative method to include Ti into the columbite precursor has permitted to synthesize 0.9PMN-0.1PT powders with high homogeneity. The present work describes this methodology, named modified columbite method, showing that the reaction between MN(T)and PbO at 800 degrees C for 2 h results in perovskite single-phase. The crystal structure alterations in the columbite and perovskite phases obtained by this methodology and the effects of potassium doping were investigated by the Rietveld method. Changes in the powder morphology, density and weight loss during the sintering process were also studied. Conclusively, potassium does not affect significantly the perovskite amount, but reduces the particle and grain sizes. This dopant also changes the relaxor behavior of 0.9PMN-0.1 PT ceramic, reducing the dielectric loss and enhancing the diffuseness of the phase transition. (C) 2005 Published by Elsevier Ltd and Techna Gronp S.r.l.
Resumo:
Continuation methods have been shown as efficient tools for solving ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Some parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a new geometric parameterization scheme that allows the complete tracing of the P-V curves without ill-conditioning problems. The proposed technique associates robustness to simplicity and, it is of easy understanding. The Jacobian matrix singularity is avoided by the addition of a line equation, which passes through a point in the plane determined by the total real power losses and loading factor. These two parameters have clear physical meaning. The application of this new technique to the IEEE systems (14, 30, 57, 118 and 300 buses) shows that the best characteristics of the conventional Newton's method are not only preserved but also improved. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a multi-cell single-phase high power factor boost rectifier in interleave connection, operating in critical conduction mode, employing a soft-switching technique, and controlled by Field Programmable Gate Array (FPGA). The soft-switching technique is based on zero-current-switching (ZCS) cells, providing ZC (zero-current) turn-on and ZCZV (zero-current-zero-voltage) turn-off for the active switches, and ZV (zero-vohage) turn-on and ZC (zero-current) turn-off for the boost diodes. The disadvantages related to reverse recovery effects of boost diodes operated in continuous conduction mode (additional losses, and electromagnetic interference (EMI) problems) are minimized, due to the operation in critical conduction mode. In addition, due to the interleaving technique, the rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller has been developed using a hardware description language (VHDL) and implemented using a XC2S200E-SpartanII-E/Xilinx FPGA device, performing a true critical conduction operation mode for all interleaved cells, and a closed-loop to provide the output voltage regulation, like as a preregulator rectifier. Experimental results are presented for a implemented prototype with two and with four interleaved cells, 400V nominal output voltage and 220V(rms) nominal input voltage, in order to verify the feasibility and performance of the proposed digital control through the use of a FPGA device.
Resumo:
A robust 12 kW rectifier with low THD in the line currents, based on an 18-pulse transformer arrangement with reduced kVA capacities followed by a high-frequency isolation stage is presented in this work. Three full-bridge (buck-based) converters are used to allow galvanic isolation and to balance the dc-link currents, without current sensing or current controller. The topology provides a regulated dc output with a very simple and well-known control strategy and natural three-phase power factor correction. The phase-shift PWM technique, with zero-voltage switching is used for the high-frequency dc-dc stage. Analytical results from Fourier analysis of winding currents and the vector diagram of winding voltages are presented. Experimental results from a 12 kW prototype are shown in the paper to verify the efficiency, robustness and simplicity of the command circuitry to the proposed concept.
Resumo:
This paper describes a methodology for solving efficiently the sparse network equations on multiprocessor computers. The methodology is based on the matrix inverse factors (W-matrix) approach to the direct solution phase of A(x) = b systems. A partitioning scheme of W-matrix , based on the leaf-nodes of the factorization path tree, is proposed. The methodology allows the performance of all the updating operations on vector b in parallel, within each partition, using a row-oriented processing. The approach takes advantage of the processing power of the individual processors. Performance results are presented and discussed.
Resumo:
An approach for solving reactive power planning problems is presented, which is based on binary search techniques and the use of a special heuristic to obtain a discrete solution. Two versions were developed, one to run on conventional (sequential) computers and the other to run on a distributed memory (hypercube) machine. This latter parallel processing version employs an asynchronous programming model. Once the set of candidate buses has been defined, the program gives the location and size of the reactive sources needed(if any) in keeping with operating and security constraints.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and -voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more pi circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the tine segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A decentralized approach for optimal reactive power dispatch using a Lagrangian decomposition method
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.
Resumo:
This paper applies two methods of mathematical decomposition to carry out an optimal reactive power flow (ORPF) in a coordinated decentralized way in the context of an interconnected multi-area power system. The first method is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). The second method uses a decomposition technique based on the Karush-Kuhn-Tucker (KKT) first-order optimality conditions. The viability of each method to be used in the decomposition of multi-area ORPF is studied and the corresponding mathematical models are presented. The IEEE RTS-96, the IEEE 118-bus test systems and a 9-bus didactic system are used in order to show the operation and effectiveness of the decomposition methods.