497 resultados para Prostheses and implants
Resumo:
Background: the failure of osseointegration in oral rehabilitation has gained importance in current literature and in clinical practice. The integration of titanium dental implants in alveolar bone has been partly ascribed to the biocompatibility of the implant surface oxide layer. The aim of this investigation was to analyze the surface topography and composition of failed titanium dental implants in order to determine possible causes of failure.Methods: Twenty-one commercially pure titanium (cpTi) implants were retrieved from 16 patients (mean age of 50.33 +/- 11.81 years). Fourteen implants were retrieved before loading (early failures), six after loading (late failures), and one because of mandibular canal damage. The failure criterion was lack of osseointegration characterized as dental implant mobility. Two unused implants were used as a control group. All implant surfaces were examined by scanning electron microscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) to element analysis. Evaluations were performed on several locations of the same implant.Results: SEM showed that the surface of all retrieved implants consisted of different degrees of organic residues, appearing mainly as dark stains. The surface topography presented as grooves and ridges along the machined surface similar to control group. Overall, foreign elements such as carbon, oxygen, sodium, calcium, silicon, and aluminum were detected in failed implants. The implants from control group presented no macroscopic contamination and clear signs of titanium.Conclusion: These preliminary results do not suggest any material-related cause for implant failures, although different element composition was assessed between failed implants and control implants.
Resumo:
Missing maxillary lateral incisors create an esthetic problem with specific orthodontic and prosthetic considerations. Implants are commonly used to replace congenitally missing lateral incisors in adolescent orthodontic patients. However, an interdisciplinary approach should be observed during the diagnosis, prognosis, and treatment plan to provide a result with good predictability and meet the esthetic and functional expectations of the patient. The present study describes a case of a young patient with tooth agenesis of maxillary lateral incisors, which was conducted with an integrated planning. After 5-year follow-up of 2 fixed implant-supported prostheses, clinical and radiographic examination showed the treatment to be successful. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:e22-e28)
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
Objective. This study evaluated the influence of estrogen deficiency and its treatment on bone density around integrated implants.Study design. Implants were placed in female rat tibiae. The animals were assigned to 5 groups: control, sham, ovariectomy, estrogen, and alendronate. The control group was humanely killed to confirm integration of the implant. The others were submitted to ovariectomy or sham surgery. Bone density was measured by digital radiographs at 6 points on sides of the implant.Results. The analysis of radiographic bone density revealed estrogen privation had a negative impact only in the cancellous bone. The estrogen group differed significantly ( P <.05) from the ovariectomy and alendronate groups. The alendronate group presented the highest density for all evaluated regions.Conclusion. Ovariectomy caused a decrease in the radiographic bone density in the cancellous region. Estrogen replacement therapy and alendronate were effective treatments in preventing bone mass loss around integrated implants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4 weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4 weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4 weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This in vitro study evaluated the dimensional accuracy of two impression techniques (tapered and splinted) with two stock trays (plastic and metal) for implant-supported prostheses. Materials and Methods: A master cast with four parallel abutment analogs and a passive framework were fabricated. Polyvinyl siloxane impression material was used for all impressions with two metal stock trays and two plastic stock trays (closed and open trays). Four groups (tapered plastic, splinted plastic, tapered metal, and splinted metal) and a control group (master cast) were tested (n = 5 for each group). After the framework was seated on each of the casts, one abutment screw was tightened, and the marginal gap between the abutment and framework on the other side was measured with a stereomicroscope. The measurements were analyzed with the Kruskal-Wallis one-way analysis of variance on ranks test followed by the Dunn method. Results: The mean values (+/- standard deviations) for the abutment/framework interface gaps were: master cast, 32 +/- 2 mu m; tapered metal, 44 +/- 10 mu m; splinted metal, 69 +/- 28 mu m; tapered plastic, 164 +/- 58 mu m; splinted plastic, 128 +/- 47 mu m. No significant difference was detected between the master cast, tapered metal, and splinted metal groups or between the tapered and splinted plastic groups. Conclusions: In this study, the rigidity of the metal stock tray ensured better results than the plastic stock tray for implant impressions with a high-viscosity impression material (putty). Statistically similar results were obtained using tapered impression copings and splinted squared impression copings. The tapered impression copings technique and splinted squared impression copings technique with a metal stock tray produced precise casts with no statistically significant difference in interface gaps compared to the master cast. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:544-550.
Resumo:
Purpose: The purpose of this in vitro study was to compare the dimensional accuracy of a stone index and of 3 impression techniques (tapered impression copings, squared impression copings, and squared impression copings splinted with acrylic resin) associated with 3 pouring techniques (conventional, pouring using latex tubes fitted onto analogs, and pouring after joining the analogs with acrylic resin) for implant-supported prostheses. Materials and Methods: A mandibular brass cast with 4 stainless steel implant-abutment analogs, a framework, and 2 aluminum custom trays were fabricated. Polyether impression material was used for all impressions. Ten groups were formed (a control group and 9 test groups formed by combining each pouring technique and impression technique). Five casts were made per group for a total of 50 casts and 200 gap values (1 gap value for each implant-abutment analog). Results: The mean gap value with the index technique was 27.07 mu m. With the conventional pouring technique, the mean gap values were 116.97 mu m for the tapered group, 5784 mu m for the squared group, and 73.17 mu m for the squared splinted group. With pouring using latex tubes, the mean gap values were 65.69 mu m for the tapered group, 38.03 mu m for the squared group, and 82.47 mu m for the squared splinted group. With pouring after joining the analogs with acrylic resin, the mean gap values were 141.12 jum for the tapered group, 74.19 mu m for the squared group, and 104.67 mu m for the squared splinted group. No significant difference was detected among Index, squarellatex techniques, and master cast (P > .05). Conclusions: The most accurate impression technique utilized squared copings. The most accurate pouring technique for making the impression with tapered or squared copings utilized latex tubes. The pouring did not influence the accuracy of the stone casts when using splinted squared impression copings. Either the index technique or the use of squared coping combined with the latex-tube pouring technique are preferred methods for making implant-supported fixed restorations with dimensional accuracy.
Resumo:
The biological response following subcutaneous and bone implantation of beta-wollastonite(beta-W)-doped alpha-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalciurn phosphate (TCP), consisting of a mixture of alpha- and beta-polymorphs; TCP doped with 5 wt. % of beta-W (TCP5W), composed of alpha-TCP as only crystalline phase; and TCP doped with 15 wt. % of beta-W (TCP15), containing crystalline alpha-TCP and beta-W. Cylinders of 2x1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue beta-W-doped alpha-TCP implants (TCP5W and TCP15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.
Resumo:
Objectives: To verify the consequences of implant-supported fixed oral rehabilitation on the quality of life (QL) of elderly individuals.Material and methods: Fifteen patients were studied, being 10 females and five males; all were aged > 60 years, were completely edentulous, wore removable dentures on both arches, and were treated with implant-supported fixed dentures. Three QL questionnaires were applied, two related to the oral conditions (Oral Impact on Daily Performance - OIDP - and Oral Health Impact Profile, short version - OHIP-14) and one dealing with global aspects (World Health Organization Quality of Life - WHOQOL-BREF), before 3, 6, and 18 months after surgical placement of implants.Results: Scores in the OIDP and OHIP-14 questionnaires were better after dental treatment. The WHOQOL-BREF was less sensitive, confirming the higher reliability of specific questionnaires (focal) compared with general questions in such situations.Conclusion: Treatment with implant-supported fixed prostheses improved QL in the elderly; these effects are better detected by specific instruments focused on the subject.