59 resultados para wear resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The purpose of this work was to submit the Nitinol files to plasma immersion ion implantation (PIII) and evaluate the effects of the surface treatment. Materials and Methods Wear resistance was determined in vitro by using an equipment for the application of horizontal movements on previously prepared notched plates made of resin. Vickers microhardness was measured in plates and files, before and after surface treatment and the surface chemical composition of the instruments was determined by X-rays photoelectron spectroscopy. Results The hardness values found for the treated Nitinol files were significantly lower than the hardness values measured before the implantation process. The comparison of commercially available instruments shows that the wear resistance of the stainless steel file is higher than the resistance of the Nitinol. Conclusions The results found led to the conclusion that the surface treatment significantly increased the Nitinol files wear resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal spray WC-based coatings are widely used in the aircraft industry mainly for their resistance to wear, reworking and rebuilding operations and repair of worn components on landing gear, hydraulic cylinders, actuators, propeller hub assemblies, gas turbine engines, and so on. The aircraft industry is also trying to use thermal spray technology to replace electroplating coatings such as hard chromium. In the present work, WC-Co coatings were built up on an AA 7050 aluminum alloy using high velocity oxygen fuel (HVOF) technology and a liquid nitrogen cooling prototype system. The influence of the spray parameters (standard conditions, W19S, increasing the oxygen flux, W19H, and also increasing the carrier gas flux, W19F) on corrosion, friction, and abrasive wear resistance were also studied. The coatings were characterized using optical (OM) and scanning electron (SEM) microscopy, and X-ray diffraction (XRD). The friction and abrasive wear resistance of the coatings were studied using Rubber Wheel and Ball on Disk tests. The electrochemical studies were conducted using open-circuit potential (E(oc)) measurements and electrochemical impedance spectroscopy (EIS). Differences among coated samples were mainly related to the variation of the thermal spray parameters used during the spray process. No significant differences were observed in the wear resistance for the coatings studied, and all of them showed a wear rate around 10 times lower than that of the aluminum alloy. The results of mass loss and wear rate were interpreted considering different mechanisms. Comparing the different spray parameters, the oxygen flux (higher flame temperature) produced the sample which showed the highest corrosion resistance in aerated and unstirred 3.5% NaCl solution. Aluminum ions were detected on the surface almost immediately after the immersion of samples W19S and W19F in chloride solution, showing that the electrolyte reached the substrate and galvanic corrosion probably occurred. For sample W19H, aluminum ions were not detected even after 120 min of immersion in NaCl solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Realizou-se um experimento em uma área de implantação da cultura do eucalipto no município de São Miguel Arcanjo-SP, com o objetivo de avaliar a eficácia da aplicação aérea de grânulos de argila como veículo dos herbicidas sulfentrazone e isoxaflutole, no controle de plantas daninhas. Foi realizada aplicação aérea dos herbicidas sulfentrazone, nas doses de 500 e 750 g i.a. ha-1, e isoxaflutole, nas doses de 150 e 225 g i.a. ha-1, utilizando-se como veículo grânulos de argila com densidade de 1,05 g cm ³, alta capacidade de absorção (24 mL 100 g-1), alta resistência ao desgaste e tamanho das partículas entre 500 mícrons e 1 mm. Também foram feitas aplicações via líquida dos mesmos herbicidas e doses com um pulverizador convencional, acoplado a um trator. Além desses tratamentos, foi mantida uma parcela testemunha, sem aplicação dos herbicidas. Nas parcelas experimentais foram semeadas as espécies de plantas daninhas Brachiaria decumbens, Ipomoea grandifolia, Merremia cissoides e Panicum maximum, sendo realizadas avaliações visuais de controle aos 75 e 110 dias após a aplicação. em geral, foram observados, nas plantas daninhas avaliadas, resultados de controle semelhantes ou superiores para a aplicação aérea (via grânulos) até 75 DAA e superiores para essa modalidade de aplicação aos 110 DAA, indicando uma extensão no período do efeito do residual dos herbicidas estudados.