131 resultados para soliton
Resumo:
Using the numerical solution of the nonlinear Schrodinger equation and a variational method it is shown that (3 + 1)-dimensional spatiotemporal optical solitons can be stabilized by a rapidly oscillating dispersion coefficient in a Kerr medium with cubic nonlinearity. This has immediate consequence in generating dispersion-managed robust optical soliton in communication as well as possible stabilized Bose-Einstein condensates in periodic optical-lattice potential via an effective-mass formulation. We also critically compare the present stabilization with that obtained by a rapid sinusoidal oscillation of the Kerr nonlinearity parameter.
Resumo:
Employing a time dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.
Resumo:
We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.
Resumo:
We use the time-dependent mean-field Cross-Pitaevskii equation to study the formation of a dynamically-stabilized dissipation managed bright soliton in a quasi-one dimensional Bose-Einstein condensate (BEC). Because of three-body recombination of bosonic atoms to molecules, atoms are lost (dissipated) from a BEC. Such dissipation leads to the decay of a BEC soliton. We demonstrate by a perturbation procedure that an alimentation of atoms from an external source to the BEC may compensate for the dissipation loss and lead to a dynamically-stabilized soliton. The result of the analytical perturbation method is in excellent agreement with mean-field numerics. It seems possible to obtain such a dynamically stabilized BEC soliton without dissipation in laboratory.
Resumo:
We employ a time- dependent mean- field- hydrodynamic model to study the generation of bright solitons in a degenerate fermion - fermion mixture in a cigar- shaped geometry using variational and numerical methods. Due to a strong Pauli- blocking repulsion among identical spin- polarized fermions at short distances there cannot be bright solitons for repulsive interspecies interactions. Employing a linear stability analysis we demonstrate the formation of stable solitons due to modulational instability of a constant-amplitude solution of the model equations for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains by jumping the effective interspecies interaction from repulsive to attractive. These fermionic solitons can be formed and studied in laboratory with present technology.
Resumo:
In this paper a relation between the Camassa-Holm equation and the non-local deformations of the sinh-Gordon equation is used to study some properties of the former equation. We will show that cuspon and soliton solutions can be obtained from soliton solutions of the deformed sinh-Gordon equation.
Resumo:
We point out that a common feature of integrable hierarchies presenting soliton solutions is the existence of some special ''vacuum solutions'' such that the Lax operators evaluated on them, lie in some abelian subalgebra of the associated Kac-Moody algebra. The soliton solutions are constructed out of those ''vacuum solitons'' by the dressing transformation procedure.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions. However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the laboratory with present technology.
Resumo:
In this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with nonzero Hopf topological charges) within the recently proposed (3 + 1)-dimensional, integrable, and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of linked closed vortices.
Resumo:
The interaction of different kinds of solitary waves of the Camassa-Holm equation is investigated. We consider soliton-soliton, soliton-cuspon and cuspon-cuspon interactions. The description of these solutions had previously been shown to be reducible to the solution of an algebraic equation. Here we give explicit examples, numerically solving these algebraic equations and plotting the corresponding solutions. Further, we show that the interaction is elastic and leads to a shift in the position of the solitons or cuspons. We give the analytical expressions for this shift and represent graphically the coupled soliton-cuspon, soliton-soliton and cuspon-cuspon interactions.
Resumo:
Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The problem of generation of atomic soliton trains in elongated Bose-Einstein condensates is considered in framework of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when the initial density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a nonlinear Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of one- and three-dimensional Gross-Pitaevskii equation and with experimental data on formation of Bose-Einstein bright solitons in cigar-shaped traps. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The symmetry structure of the non-Abelian affine Toda model based on the coset SL(3)/SL(2) circle times U(1) is studied. It is shown that the model possess non-Abelian Noether symmetry closing into a q-deformed SL(2) circle times U(1) algebra. Specific two-vertex soliton solutions are constructed.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.