23 resultados para Zinc(ii)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synthesis and characterization, including data on thermal decomposition, are reported for the complexes of S,S'-methylenebis(cysteine) (djenkolic acid) with copper(II), zinc(II) and cadmium(II): CuC(7)H(12)N(2)O(4)S(2) [I]; ZnC(7)H(12)N(2)O(4)S(2) [II] and CdC(7)H(12)N(2)O(4)S(2) [III] X-ray diffraction showed that the compounds are isostructural and belong to a monoclinic system. According to IR spectra, COO, NH(2) groups and bridging sulfur atoms are the main coordination sites.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level. Here we report a strategy to incorporate gold nanoparticles (AuNPs) into the LB film by co-deposition in order to achieve surface-enhanced Raman scattering (SERS) of the zinc(II)-protoporphyrin (IX) dimethyl ester (ZnPPIX-DME). Prior to the LB co-deposition, the properties of the Langmuir monolayer of ZnPPIX-DME at the air-water interface, containing AuNPs in the subphase, are studied through the surface-pressure versus mean molecular area (π-A) isotherms. The ZnPPIX-DME+AuNPs π-A isotherm presented a significant shift to higher molecular area, suggesting an interaction between both ZnPPIX-DME molecules and AuNPs. Those interactions are a key factor allowing the co-deposition of both AuNPs and ZnPPIX-DME molecules onto a solid substrate, thus forming the LB film. SERS of ZnPPIX-DME was successfully attained, ensuring the spatial distribution of the AuNPs. Higher enhancement factors were found at AuNP aggregates, as a result of the intense local electromagnetic field found in the metal nanoparticle aggregates. The main vibrational bands observed in the SERS spectra suggest a physical adsorption of the ZnPPIX-DME onto the surface of AuNPs. The latter is not only in agreement with the interactions pointed out by the π-A isotherms but also suggests that this interaction is kept upon LB film co-deposition.
Resumo:
The aim of this work is to report on the luminescence properties of BaZnSiO4 activated by Eu3+ and Mn2+ ions. Doped and undoped powder samples were prepared by solid-state reaction starting from oxides and carbonates or Ba2SiO4:Eu3+ and Zn2SiO4:Mn2+ precursors. X-ray diffraction powder data, IR vibrational, and UV-vis luminescence spectroscopies were carried out. Results showed that doped and undoped samples from both types of precursors have the same structure and crystallize with a superstructure of hexagonal kalsilite. Vibrational spectroscopy has confirmed the formation of a silicate group, which outlines differences between products and silicate precursors. The observed luminescence assigned to Eu3+ and Mn2+ transitions covered most parts of the visible spectrum, an important requirement for phosphors in fluorescent low-pressure mercury vapor lamps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Information about micronutrients extraction and exportation by castor bean hybrids of short stature, and the periods of highest demand for each micronutrient, are most importance for correct management to fertilization. This study aimed to evaluate the micronutrients extraction and exportation by Savana hybrid castor bean, on season and out-of-season growing. The experiments were conducted during season of 2005/2006 and out-of-season of 2006 in an Oxisol. The experimental design was a randomized block with four replications. The plots were consisted by harvest times of plants, which were carried out at 17, 31, 45, 59, 73, 97 and 120 days after emergence (DAE) during the season and at 17, 31, 45, 59, 80; 100 and 120 DAE in the out-of-season. In both seasons the order of micronutrients extraction by hybrid Savanna is: Fe> Mn> Zn> B> Cu> Mo, but with larger amounts of season cultivation. The time of greatest Zn and Mo absorption during the season and the Fe in out-of-season occurs at 80 DAE, although the other micronutrients are absorbed at higher rates between 50 and 65 DAE. In season the yield, nutrients extraction and exportation from soil are higher than out-of-season, but the nutrients extraction and exportation per ton show less variation between growing seasons. Fifty percent of zinc and 60% of Cu uptaken, on average, in out-of-season is exported with grains, but for the other micronutrients the proportion exported with grains is less than 40%.