25 resultados para Stars: distances
Resumo:
The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.
Resumo:
The aim of the present study was to investigate genetic parameters for racing time in Thoroughbred horses racing at distances between 1000 and 1600 m subdivided into 100-m intervals. The data provided by TURFETOTAL Ltda comprised races that occurred in the Gavea and Cidade Jardim race tracks over a period of 11 years (1992-2002) and consisted of 32 145 races and 238 890 time records. The variance components necessary to obtain the heritability and repeatability estimates of the traits studied were estimated with the MTDFREML program, and animal age at race (3 years old or younger, 4, 5 and older than 5 years), sex (male and female), number of races (1-32 145), and postposition at start (1-11) as fixed effects, and animal and permanent environmental random effects were included in a one-trait animal model. Males were significantly superior to females at all distances. Excluding the 1100 m distance, animals 4 years of age were significantly faster than the mean of the other ages for all distances analysed. Horses older than 5 years showed a significantly lower performance than the mean of the other ages for all distances analysed, except for the 1100 m. Postpositions one and two did not differ significantly from one another for any of the distances analysed. These two inner positions both together varied from the other positions depending on race length. The components of additive genetic and permanent environmental variance varied in a similar way, tending to decrease with increasing racing distance, and the other temporary environmental variance almost doubled from 1000 to 1600 m. As was the case for the additive genetic and environmental variances, heritability and repeatability estimates tended to decrease with increasing distance, indicating that selection based on racing time will be less successful when the racing distance increases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Based on the accretion-induced magnetic field decay model, in which a frozen field and an incompressible fluid are assumed, we obtain the following results: (1) an analytic relation between the magnetic field and spin period, if the fastness parameter of the accretion disk is neglected (The evolutionary tracks of accreting neutron stars in the P-B diagram in our model are different from the equilibrium period lines when the influence of the fastness parameter is taken into account.); (2) the theoretical minimum spin period of an accreting neutron star is max(1.1ms (DeltaM/M(circle dot))(-1)R(6)(-5/14) I(45)(M/M(circle dot))(-1/2),1.1ms (M/M(circle dot))(-1/2) R(6)(17/14)), independent of the accretion rate (X-ray luminosity) but dependent on the total accretion mass, DeltaM; however, the minimum magnetic field depends on the accretion rate; (3) the magnetic field strength decreases faster with time than does the period.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A simulation study was made of the effects of mixing two evolutionary forces (natural selection and random genetic drift), combined in a single data matrix of gene frequencies, on the resulting genetic distances among populations. Twenty-one, kinds of simulated gene frequencies surfaces, for 15 populations linearly distributed over geographic space, were used to construct 21 data matrices, combining different proportions of two types of surfaces (gradients and random surfaces). These matrices were analysed by Unweighted Pair-Group Method - Arithmetic Averages (UPGMA), clustering and Principal Coordinate Analysis. The results obtained show that ordination is more accurate than UPGMA in revealing the spatial patterns in the genetic distances, in comparison with results obtained using the Mantel test comparing directly genetic and geographic distances.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A class of boson-fermion stars, whose spin-0 and spin-1/2 constituents interact through a U(1) current-current term in the Lagrangian density, is analyzed. It is shown that it describes the low-energy behavior of a system of weakly interacting massive particles (WIMPs) from the leptonic sector of the minimal supersymmetric standard model. In this case the effective coupling constant A is related to the Fermi constant GF.
Resumo:
In the weak field approximation of higher order gravity theory a gravitational potential is described by a Newtonian plus a Yukawa-like term. This new term is used to explain some aspects of galactic dynamics, without considering dark matter. Its presence modifies the scattering probability of a massive intruder star and relaxation time of the stellar system.
Resumo:
In this paper we introduce a current-current type interaction term in the Lagrangian density of gravity coupled to complex scalar fields, in the presence of a degenerated Fermi gas. For low transferred momenta, such a term, which might account for the interaction among boson and fermion constituents of compact stellar objects, is subsequently reduced to a quadratic one in the scalar sector. This procedure enforces the use of a complex radial field counterpart in the equations of motion. The real and the imaginary components of the scalar field exhibit different behavior as the interaction increases. The results also suggest that the Bose-Fermi system undergoes a phase transition for a suitable choice of the coupling constant.
Resumo:
Considering the ferromagnetic screening for the decay of the X-ray neutron star magnetic field in the binary accretion phase, the phase transition of ferromagnetic materials in the crust of neutron star induces the ferromagnetic screening saturation of the accreted crust, which results in the minimum surface magnetic field of the accreting neutron star, about 108 G, if the accreted matter has completely replaced the crust mass of the neutron star. The magnetic field evolution versus accreted mass is given as Bs ∝ ΔM-0.9, and the obtained magnetic field versus spin period relation is consistent with the distribution of the binary X-ray sources and recycled pulsars. The further thermal effect on the magnetic evolution is also studied.