42 resultados para Star countable spaces
Resumo:
A participação do Brasil no mercado externo de frutas tem aumentado consideravelmente e com potencial para crescer ainda mais. A constante ascensão dos dados de exportação brasileira é resultado da combinação de avanços tecnológicos do setor produtivo e de acesso a novos mercados consumidores. A caramboleira apresenta-se como uma excelente opção de cultivo de frutas exóticas, com grande potencial para atender ao mercado interno e às exportações. Assim, objetivou-se avaliar a marcha de absorção e de acúmulo de nutrientes em mudas de caramboleiras cultivadas em solução nutritiva. O experimento foi realizado em parcelas subdivididas, sendo utilizadas como parcela as duas cultivares de caramboleira ('B-10' e 'Golden Star') e, como subparcelas, cinco épocas de coleta de plantas, realizadas aos 208; 233; 258; 283 e 308 dias após o transplantio para a solução nutritiva. O delineamento foi inteiramente casualizado, com três repetições. As mudas foram cultivadas em vasos (8L) com solução nutritiva (pH=5,5 ± 0,5), com aeração. O experimento iniciou-se em 24-08-2005. Nos diferentes órgãos das mudas (folhas, caule e raízes), determinaram-se a marcha de absorção, o acúmulo de nutrientes e os índices nutricionais. Não houve diferenças no acúmulo de nutrientes entre as mudas de caramboleira de ambas as cultivares, sendo a ordem decrescente dos nutrientes em cada muda de 'B-10', no final do período experimental: N > K > Ca > Mg > S > P > Fe > Mn > B > Cu > Zn. Para a 'Golden Star', a ordem foi: N > K > Ca > Mg > P > S > Fe > Mn > B > Cu > Zn. Para as duas cultivares, o acúmulo médio foi maior nas folhas > caule > raízes. O período de maior exigência para 'B-10' foi entre 208 - 233 e, para 'Golden Star', entre 233 - 283 dias após o transplantio. As diferentes taxas de acumulação líquida dos nutrientes, nos diferentes órgãos da caramboleira, nem sempre acompanharam a taxa de acumulação de nutrientes do respectivo órgão.
Resumo:
O Brasil é um dos maiores produtores de carambola do mundo, entretanto há poucas informações científicas, especialmente estudos de nutrição mineral com mudas dessa frutífera. Objetivando contribuir com o conhecimento desse importante aspecto, desenvolveu-se estudo que permitisse avaliar o crescimento e o acúmulo de nutrientes em mudas de caramboleiras, cultivadas em solução nutritiva. O experimento foi realizado em parcelas subdivididas, sendo utilizadas como parcela as duas cultivares de caramboleira ('B-10' e 'Golden Star') e, como subparcelas, as cinco épocas de coleta de plantas, realizadas aos 208; 233; 258; 283 e 308 dias após o transplantio para a solução nutritiva. O delineamento foi inteiramente casualizado, com três repetições. As mudas foram cultivadas em vasos (8L) com solução nutritiva (pH=5,5 ± 0,5), com aeração. O experimento iniciou-se em 24-08-2005. Nos diferentes órgãos das mudas (folhas, caule e raízes), avaliaram-se o crescimento e o acúmulo de nutrientes, e os índices nutricionais. Não houve diferenças no crescimento e, em geral, no acúmulo da massa da matéria seca entre as duas cultivares. Houve acúmulo linear da massa da matéria seca das mudas de caramboleira com o tempo de cultivo, sendo maior nas folhas > caule > raízes. O período de maior acúmulo da massa de matéria seca e da taxa de crescimento relativo na planta inteira esteve compreendido entre 208 - 233 e 233 - 258 dias após o transplantio para a 'B-10' e a 'Golden Star', respectivamente.
Resumo:
We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
We study the equation of state for neutron matter using the Walecka model including quantum corrections for baryons and sigma mesons through a realignment of the vacuum. We next use this equation of state to calculate the radius, mass and other properties of rotating neutron star.
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We ascribe the 15-60 Hz Quasi Periodic Oscillation (QPO) to the periastron precession frequency of the orbiting accreted matter at the boundary of magnetosphere-disk of Xray neutron star (NS). Considering the relativistic motion mechanism for the kHz QPO, that the radii of the inner disk and magnetosphere-disk of NS are correlated with each other by a factor is assumed. The obtained conclusions include: all QPO frequencies increase with increasing the accretion rate. The theoretical relations between 15-60 Hz QPO (HBO) frequency and the twin kHz QPOs are similar to the measured empirical formula. Further, the better fitted NS mass by the proposed model is about 1.9 solar masses for the detected LMXBs.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]