43 resultados para Rotating oval billiard
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties for a classical particle confined inside a closed region with an elliptical-oval-like shape are studied. The dynamics of the model is made by using a two-dimensional nonlinear mapping. The phase space of the system is of mixed kind and we have found the condition that breaks the invariant spanning curves in the phase space. We have discussed also some statistical properties of the phase space and obtained the behaviour of the positive Lyapunov exponent. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider an electric charge, minimally coupled to the Maxwell field, rotating around a Schwarzschild black hole. We investigate how much of the radiation emitted from the swirling charge is absorbed by the black hole and show that most of the photons escape to infinity. For this purpose we use the Gupta-Bleuler quantization of the electromagnetic field in the modified Feynman gauge developed in the context of quantum field theory in Schwarzschild spacetime. We obtain that the two photon polarizations contribute quite differently to the emitted power. In addition, we discuss the accurateness of the results obtained in a full general relativistic approach in comparison with the ones obtained when the electric charge is assumed to be orbiting a massive object due to a Newtonian force.
Resumo:
The effects of a sudden increase and decrease of the interatomic interaction and harmonic-oscillator trapping potential on vortices in a quasi two-dimensional rotating Bose-Einstein condensate are investigated using the mean-field Gross-Pitaevskii equation. We also study the decay of vortices when the rotation of the condensate is suddenly stopped. Upon a free expansion of a rotating BEC with vortices the radius of the vortex core increases more rapidly than the radius of the condensate. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We analyse the scalar radiation emitted from a source rotating around a Schwarzschild black hole using the framework of quantum held theory at the tree level. We show that for relativistic circular orbits the emitted power is about 20-30% smaller than what would be obtained in Minkowski spacetime. We also show that most of the emitted energy escapes to infinity. Our formalism can readily be adapted to investigate similar processes.