74 resultados para Proton Conductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A soliton model for proton conductivity in Langmuir films is presented. The model contains three real scalar fields describing the hydrogen involved in the conduction, the hydrophilic head of the Langmuir film, and the water. Soliton solutions that describe proton motion along the hydrogen bonds are found. Under compression of the film, the distance between the minima of the proton potential and the strength of the hydrogen bonds between the film molecule and the water are changed. Such changes increase the probability of soliton creation. The model. presented allows proton conductivity data in Langmuir films to be explained. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical conductivity and H-1 Nuclear Magnetic Resonance (NMR) techniques were used to investigate the ion-exchanged layered lead-niobate perovskite HPb2Nb3O10. nH(2)O, over the temperature range 90-350 K. Compounds were synthesized by the sol-gel method and calcinated at 650 degreesC. Analysis of the NMR data gives activation energies for the proton motion in the range 0.14-0.40 eV, which are dependent on the water content. The frequency and temperature dependencies of the proton spin-lattice relaxation times show that the character of the motion of the: water molecules is essentially two-dimensional, reflecting the layered structure of the material. The H-1 line-narrowing transition and the single spin-lattice relaxation rate maximum, observed in the hydrated compounds, are consistent with a Grotthuss-like mechanism for the proton diffusion. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BaCe 0.9-xNb xY 0.1O 3-δ (where x=0, 0.01, 0.03 and 0.05) powders were synthesized by solid-state reaction to investigate the influence of Nb concentration on chemical stability and electrical properties of the sintered samples. The dense electrolyte pellets were formed from the powders after being uniaxially pressed and sintered at 1550 °C. The electrical conductivities determined by impedance measurements in temperature range of 550-750 °C in different atmospheres (dry argon and wet hydrogen) showed a decreasing trend with an increase of Nb content. For all samples higher conductivities were observed in the wet hydrogen than in dry argon atmosphere. The chemical stability was enhanced with increasing of Nb concentration. It was found that BaCe 0.87Nb 0.03Y 0.1O 3-δ is the optimal composition that satisfies the opposite demands for electrical conductivity and chemical stability, reaching 0.8×10 -2 S cm -1 in wet hydrogen at 650 °C compared to 1.01×10 -2 S cm -1 for undoped electrolyte. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimization of the major properties of anodes based on proton conductors, such as microstructure, conductivity and chemical stability, is yet to be achieved. In this study we investigated the influence of indium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO-BaCe0.9-xInxY0.1O 3-δ (NiO-BCIYx) anodes. Four compositions of cermet anode substrates NiO-BCIYx were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of indium. Anode substrates tested on chemical stability in the CO2 atmosphere showed high stability compared to anode substrates based on commonly used doped barium cerates. Microstructural properties of the anode pellets before and after testing in CO2 were investigated using X-ray diffraction analysis. Impedance spectroscopy measurements were used for evaluation of electrical properties of the anode pellets and the conductivity values of reduced anodes of more than 14 S cm-1 at 600 °C confirmed percolations through Ni particles. Under fuel cell operating conditions, the cell with a Ni-BCIY20 anode achieved the highest performance, demonstrating a peak power density 223 mW/cm2 at 700 °C confirming the functionality of Ni-BCIY anodes.© 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane integrity, as measured by electrical conductivity (EC), is suggested as an indicator of seed vigor in soybean [Glycine max (L.) Merrill] seeds. This study evaluated the effect of storage time and temperature on EC of six soybean seed lots (two lots each of high, medium and low vigor). All seed lots were adjusted to 120 g kg(-1) seed moisture, sealed in aluminum foil packets and placed in storage at 10 and 20 degreesC or stored unsealed in multi-wall paper bags in warehouse (WH) conditions at Lexington, KY, USA for 486 days. Four of the six seed lots were also stored unsealed at 10 degreesC. All seed lots were sampled at 3-month intervals and evaluated for seed moisture (SMC), standard germination (SG) and vigor [accelerated aging (AA) and EC]. After 91 and 204 days in storage, samples initially stored at 20 degreesC and WH were moved to 10 degreesC and sampled at the same intervals. Seed moisture content for unsealed samples equilibrated at 107 g kg(-1) (+/-9 g kg(-1)) in both the WH and 10 degreesC environments. No change in SG occurred for seeds stored sealed (120 g kg(-1)) at 10 degreesC, except for the low vigor seed lots which declined significantly at the last sample date. The AA germination declined significantly for all, seed lots stored sealed at 10 degreesC, however the EC did not change during the same storage period. Seeds stored sealed at 20 degreesC and unsealed in the WH showed rapid declines in AA and SG and significant increases in EC. When these seeds were moved to 10 degreesC, however, the AA continued to decline while the EC remained at the same level (no significant change) for the remainder of the seed storage period. Thus whilst the AA declined in all environments, the EC only increased at higher temperatures (20 degreesC, WH) but showed little change during storage at 10 degreesC. Thus, precautions must be taken if using EC to measure soybean seed vigor following storage at 10 degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vigor of soybean [Glycine max (L.) Merrill] seeds can be evaluated by measuring the electrical conductivity (EC) of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests) were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE). Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased, Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)