17 resultados para Malic acid.
Resumo:
A colorimetric method has been developed and optimized to measure L-malic acid in samples of fruit juices and wine. This method is based on oxidation of the analyte, catalyzed by malate dehydrogenase (MDH) from dry baker's yeast, and in combination with the reduction of a tetrazolium salt (MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). In the present study, the method exhibited sensitivity in the range of 500-4000 mu M of L-malic acid in the reaction cuvette, with the lower detection limit of 6.7-10(-2) g/L, the upper limit of 53.6.10(-2) g/L and a maximum standard deviation of only 2.5 % for the analyzed samples. The MDH activity from baker's yeast was also optimized, the enzyme showed a high stability at pH=8.0-9.0 and the activity was maintained completely at temperatures up to 40 degrees C for 1 hour. The results show that the colorimetric method using enzymatic preparations from dry baker's yeast is a simple and low-cost method with possibility of wide application.
Resumo:
The malate dehydrogenase (MDH) and ascorbate oxidase were immobilized independently, onto silanized controlled porous silica and packed in a tygon tube. The reactors were inserted in the flow system, and the malic acid was determined by measurement of NADH produced by enzymatic reaction. The NADH was reoxidized in a wall jet cell that consisted of spectrographic graphite, Ag/AgCl, KCl(sat), and steel needle as work, reference, and counter electrodes, respectively. The current intensities were measured at 390 mV. The malate calibration curve shows a linear range from 5.0 x 10(-6) to 1.0 x 10(-4) molL(-1), the lifetime was 40 analyses, after that a decrease of 20% on the response is observed. Three different citric juices were analyzed and a good correlation between the proposed method and spectrophotometric commercial kit were obtained.
Resumo:
The dough-leavening power of baker's yeast, Saccharomyces cerevisiae, is strongly influenced by conditions under which the pressed yeast is maintained prior to bread dough preparation. In this study, the influence of the yeast cell's pre-treatment with organic acids (malic, succinic, and citric acids) was investigated at a wide range of pH values when the pressed yeast samples were exposed to 30 degrees C. Increased fermentative activity was observed immediately after pre-treatment of the cells with organic acids. When the pH of the pressed yeast containing added citric acid was raised from 3.5 to 7.5, increases in both fermentative and maltase activities were obtained. Improvements in viability and levels of total protein were also observed during storage in the presence of citric acid, notably at pH 7.5. Glycerol-3-phosphate dehydrogenase activity and levels of internal glycerol also increased in the presence of citrate. on the other hand, pressed yeast samples containing succinic acid at pH 7.5 showed decreased viability during storage despite the maintenance of high levels of fermentative activity, similar to pressed yeast containing malic acid at pH 4.5 and 7.5. Decreases in intracellular levels of trehalose were observed during storage in all cases. Overall, the results of this study revealed the potential benefits of adding organic acids to pressed yeast preparations for baking purposes.
Resumo:
O objetivo deste trabalho foi avaliar o efeito de compostos orgânicos de extratos de plantas de seis espécies e da fertilização fosfatada na disponibilidade de fósforo no solo. Tubos de 30 cm de altura e 5 cm de diâmetro foram preenchidos com Latossolo Vermelho-Amarelo. Cada tubo constituiu uma parcela, em delineamento completamente casualizado, em arranjo fatorial 7x2, com quatro repetições. Extratos líquidos de aveia-preta (Avena strigosa), nabo forrageiro (Raphanus sativus), milho (Zea mays), milheto (Pennisetum glaucum), soja (Glycine max), sorgo forrageiro (Sorghum bicolor) e água (testemunha) foram aplicados em cada parcela, com ou sem fertilização com fosfato solúvel. Após sete dias de incubação, amostras de solo foram coletadas em várias profundidades, e foram analisadas as formas lábil, moderadamente lábil e não lábil de fósforo no solo. Houve acúmulo de fósforo inorgânico nas frações lábil e moderadamente lábil do solo, como conseqüência da adição dos extratos de plantas, principalmente na camada superficial (0-5 cm). O nabo forrageiro, com maior concentração de ácido málico e maior conteúdo de P no tecido do que outras espécies, foi o mais eficiente em incrementar a disponibilidade de P no solo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heat capacities of binary aqueous solutions of different concentrations of sucrose, glucose, fructose, citric acid, malic acid, and inorganic salts were measured with a differential scanning calorimeter in the temperature range from 5degreesC to 65degreesC. Heat capacity increased with increasing water content and increasing temperature. At low concentrations, heat capacity approached that of pure water, with a less pronounced effect of temperature, and similar abnormal behavior of pure water with a minimum around 30degreesC-40degreesC. Literature data, when available agreed relatively well with experimental values. A correction factor, based on the assumption of chemical equilibrium between liquid and gas phase in the Differential Scanning Calorimeter, was proposed to correct for the water evaporation due to temperature rise. Experimental data were fitted to predictive models. Excess molar heat capacity was calculated using the Redlich-Kister equation to represent the deviation from the additive ideal model.
Resumo:
Density of binary solutions and combinations of sucrose, glucose, fructose, citric acid, malic acid, pectin, and inorganic salts were measured with an oscillating tube density meter in the temperature range from 10degrees to 60degreesC, at varying concentrations. Density can be predicted with accuracy better than 5 x 10(-5) g cm(-3) using predictive equations obtained by fitting the experimental data. Available literature values agreed well with experimental data. Relations for the excess molar volume of these solutions were derived in terms of mole fraction and temperature. A thermodynamic model for the volumetric analysis of multicomponent aqueous solutions containing electrolyte and non-electrolyte compounds was also proposed. These models can be used for prediction of density of liquid food systems, specially fruit juices and beverages, based on composition and temperature, with high accuracy and without elaborate experimental work.
Resumo:
We have studied the bevahior of the phenomenological 4f-4f intensity parameters in compounds of the Nd ion with glycine, L-aspartic acid, L-glutamic acid, L-histidine, DL-malic acid and Aspartame™ in aqueous solution, as a function of the pK values and partial charges on the oxygens of the carboxylate groups of these molecules. The results are discussed and qualitatively interpreted in terms of the forced electric dipole and dynamic coupling mechanisms of the 4f-4f intensities, thus indicating that the forced electric dipole mechanism is dominant.
Resumo:
Abamectin (ABA), which belongs to the family of avermectins, is used as a parasiticide; however, ABA poisoning can impair liver function. In a previous study using isolated rat liver mitochondria, we observed that ABA inhibited the activity of adenine nucleotide translocator and FoF1-ATPase. The aim of this study was to characterize the mechanism of ABA toxicity in isolated rat hepatocytes and to evaluate whether this effect is dependent on its metabolism. The toxicity of ABA was assessed by monitoring oxygen consumption and mitochondrial membrane potential, intracellular ATP concentration, cell viability, intracellular Ca2+ homeostasis, release of cytochrome c, caspase 3 activity and necrotic cell death. ABA reduces cellular respiration in cells energized with glutamate and malate or succinate. The hepatocytes that were previously incubated with proadifen, a cytochrome P450 inhibitor, are more sensitive to the compound as observed by a rapid decrease in the mitochondrial membrane potential accompanied by reductions in ATP concentration and cell viability and a disruption of intracellular Ca2+ homeostasis followed by necrosis. Our results indicate that ABA biotransformation reduces its toxicity, and its toxic action is related to the inhibition of mitochondrial activity, which leads to decreased synthesis of ATP followed by cell death. © 2012 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 pm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 degrees C.Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)